
M147 Practice Problems for Exam 1

Exam 1 will be Thursday September 30, 7:30-9:30 p.m. (The exam room will be announced
in class.) It will cover sections 1.1, 1.2, 1.3, 3.1, 3.2, 3.3, 3.4, 3.5. Calculators will not be
allowed on the exam. The first ten problems on the exam will be multiple choice. Work will
not be checked on these problems, so you will need to take care in marking your solutions.
For the remaining problems unjustified answers will not receive credit.

1. Which of the following functions corresponds with the graph in Figure 1.

(a) y = log2 x

(b) y = log 1

2

x

(c) y = 2x

(d) y = (1

2
)x
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Figure 1: Figure for Problem 1.

2. Use a logarithmic transformation to find a linear relationship between (appropriate trans-
formations of) x and y if

y = 2 × 74x.

3. Given the semilog plot in Figure 2, find a functional relationship between x and y.

4. Given the double-log plot in Figure 3, find a functional relationship between x and y.

5a. When log y is graphed as a function of x, a straight line results. Graph the straight
line, on a semilog plot, associated with the points (1, 3) and (7, 9), given in the original
coordinates.

5b. Find a functional relationship between x and y for the situation described in (5a).
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Figure 2: Figure for Problem 3.

6. Compute each of the following limits:

6a.

lim
x→2

x2 − 4

x − 2
.

6b.
lim

x→3−

x

x2 − 2x − 3
.

6c.

lim
x→0

sin 7x

x
.

6d.

lim
x→1

√
x2 + 1 −

√
x + 1

x − 1
.

6e.

lim
x→−∞

x3 − x2 + 1

1 − x2
.

6f.
lim

x→∞
(e−x sin x).

6g.
lim
x→∞

√
x2 − x −

√
x2 + x.

7. Find all points at which
ln(1 − x)

ln(1 + x)
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Figure 3: Figure for Problem 4.

is continuous.

8. Find a value for c that makes the given function continuous at all points.

f(x) =

{

x2 + 1, x ≤ 1

x − c, x > 1
.

9a. Prove that the equation

e
√

x − 1

1 + x2
= 1

has a solution on the interval (0, 1).

9b. Determine the number of steps required to approximate the solution in (9a) with an
error less than .01.

10. Prove that the equation
ex − 2 = sin x

has at least one real-valued solution.

11. Use the bisection method to approximate a root of

x4 + x3 + x − 1 = 0

with a maximum error less than 1

3
.

12. Use the bisection method to approximate 4
√

5 with a maximum error less than 1
3
.

13. The quadratic equation
x2 − x − 1 = 0

3



has two roots, one positive and one negative. The positive root is traditionally referred to
as the golden mean. Use the bisection method to approximate the value of this root with a
maximum error less than 1

5
.

Solutions

1. Notice that the function is defined for negative values of x, so it cannot be either of the
logarithms. Since the function is decreasing, it must be exponentiation with a base less than
1, and this leaves only (d) y = (1

2
)x.

2. You can proceed by taking a logarithm of this equation to any base. Though 7 would be
a reasonable base here, it is sufficiently uncommon that I’ll use base 10. That is,

log y = log 2 × 74x ⇒ log y = log 2 + 4x log 7.

The linear relationship is
log y = (4 log 7)x + log 2.

3. This is a semilog plot with log y on the vertical axis and x on the horizontal. That is, the
line has an equation of the form

log y = mx + b.

We can read directly from the plot that b = −1. (I.e., b = log 10−1 = −1) Likewise, the slope
is

m =
log 101 − log 10−1

4 − 0
=

1 − (−1)

4
=

1

2
.

We have, then,

log y =
1

2
x − 1.

In order to get a functional relationship, exponentiate each side with base 10,

10log y = 10
1

2
x−1 ⇒ y = 10−1(10

1

2 )x.

4. This is a double-log plot, so we look for a relationship of the form

log y = m log x + b,

for which
y = 10bxm.

Reading the plot, we see that

m =
log(4 × 104) − log(4 × 102)

log 101 − log 100
=

log 4×104

4×102

1
= log 102 = 2.

Likewise,
b = log 400.
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We conclude
y = 10log 400x2 = 400x2.

5. The slope is

m =
log 9 − log 3

7 − 1
=

log 9

3

6
=

1

6
log 3 = log 3

1

6 .

Using the first point, we can write the line in point-slope form

log y − log 3 = log 3
1

6 (x − 1),

which we can rearrange as

log y = x log 3
1

6 + log 3 − log 3
1

6 = log 3
x

3 + log
3

3
1

6

= log 3
x

3 + log 3
5

6 .

Finally, we take each side as an exponent of 10:

10log y = 10log 3
x

3 +log 3
5
6 = 10log 3

x

3 · 10log 3
5
6 = 3

x

3 · 3 5

6 .

We conclude
y = e

x+5

6 .

6a. Compute

lim
x→2

x2 − 4

x − 2
= lim

x→2

(x − 2)(x + 2)

x − 2
= lim

x→2
(x + 2) = 4.

Notice in particular that we don’t have to be able to evaluate the function at a point to
compute its limit at that point.

6b. Compute

lim
x→3−

x

x2 − 2x − 3
= lim

x→3−

x

(x − 3)(x + 1)
= −∞.

6c. We make the substitution y = 7x, and our limit becomes

lim
y→0

sin y

(y/7)
= 7 lim

y→0

sin y

y
= 7.

You won’t lose points on a problem like this if you omit the explicit substitution.

6d. In this case, we rationalize the numerator,

lim
x→1

√
x2 + 1 −

√
x + 1

x − 1
= lim

x→1

√
x2 + 1 −

√
x + 1

x − 1
·
√

x2 + 1 +
√

x + 1√
x2 + 1 +

√
x + 1

= lim
x→1

x2 + 1 − (x + 1)

(x − 1)(
√

x2 + 1 +
√

x + 1)

= lim
x→1

x2 − x

(x − 1)(
√

x2 + 1 +
√

x + 1)
= lim

x→1

x(x − 1)

(x − 1)(
√

x2 + 1 +
√

x + 1)

= lim
x→1

x

(
√

x2 + 1 +
√

x + 1)
=

1

2
√

2
.
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6e. According to our rule from class, the following calculation is entirely fair:

lim
x→−∞

x3 − x2 + 1

1 − x2
= lim

x→−∞

x3

−x2
= lim

x→−∞
(−x) = +∞.

6f. Since sin x does not have a limit as x → ∞ we use the Squeeze Theorem (a.k.a. the
Sandwich Theorem), observing

−e−x ≤ e−x sin x ≤ e−x.

We have limx→∞(−e−x) = limx→∞(e−x) = 0, so by the Squeeze Theorem

lim
x→∞

e−x sin x = 0.

6g. We compute

lim
x→∞

√
x2 − x −

√
x2 + x = lim

x→∞
(
√

x2 − x −
√

x2 + x) ·
√

x2 − x +
√

x2 + x√
x2 − x +

√
x2 + x

= lim
x→∞

(x2 − x) − (x2 + x)√
x2 − x +

√
x2 + x

= lim
x→∞

−2x√
x2 − x +

√
x2 + x

·
1

x
1
x

= lim
x→∞

−2
√

1 − 1
x

+
√

1 + 1
x

= −1.

7. First, observe that ln(1 − x) is only defined for x < 1 and ln(1 + x) is only defined for
x > −1, so our range is restricted to this interval. Also, we cannot divide by 0, so we must
have x 6= 0. We conclude that the points of continuity are

(−1, 0) ∪ (0, 1).

8. We observe that the only point at which f may not be continuous is x = 1, and at this
point f(1) = 2. In order to make the function continuous at this point, we must ensure

lim
x→1+

x − c = 2,

and this requires c = −1.

9a. We define

f(x) = e
√

x − 1

1 + x2
− 1,

and compute

f(0) = 1 − 1 − 1 = −1

f(1) = e − 1

2
− 1 > 0,
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where the inequality holds because e ≈ 2.72. We conclude from the Intermediate Value
Theorem that there exists a value c ∈ (0, 1) so that

f(c) = 0.

9b. The error at step k is

ek =
b − a

2k
,

so we require (here a = 0 and b = 1)

1

2k
< .01 =

1

100
⇒ 2k > 100.

Taking a natural log of both sides, we obtain

ln 2k > ln 100 ⇒ k >
ln 100

ln 2
.

(It’s also reasonable to work with log10 x or log2 x.)

10. We begin by defining the function

f(x) = ex − 2 − sin x,

and we note that our goal will be to show that f(x) has at least one real root. First, we
observe that f(0) = −1. Next, we observe that since e > 2 we know that e2 > 4, so that
f(2) = e2 −2− sin 2 > 0. We can conclude from the Intermediate Value Theorem that there
is a root on the interval (0, 2).

11. We begin by defining the function

f(x) = x4 + x3 + x − 1,

and we observe that f(0) = −1 and f(1) = 2, so that we are guaranteed a root in (0, 1). We
take

c1 =
1

2
± 1

2
,

and compute

f(
1

2
) = (

1

2
)4 + (

1

2
)3 +

1

2
− 1 =

1

16
+

1

8
+

1

2
− 1 =

1 + 2 + 8 − 16

16
= − 5

16
< 0.

We conclude that the root is on the interval (1
2
, 1), and our second approximation becomes

c2 =
1

2
+ 1

2
=

3

4
± 1

4
,

and 1
4

< 1
3
, so this is a sufficient approximation. (Note. This equation has a second real

root between -2 and -1, so it’s possible to approximate that one instead, which is fine.)

7



12. Begin by noticing that x = 4
√

5 is a root of f(x) = x4 − 5. We observe that f(1) = −4
and f(2) = 11, so that we are guaranteed a root in (1, 2). We take

c2 =
1 + 2

2
=

3

2
± 1

2
.

This error is not small enough, so we proceed with another step, noting this time f(3
2
) =

81
16

− 5 = 81−80
16

= 1
16

. Since this is positive we are guaranteed a root in (1, 3
2
). We take

c2 =
1 + 3

2

2
=

5

4
± 1

4
.

Since 1
4

< 1
3

c2 = 5
4

is sufficient.

13. We set
f(x) = x2 − x − 1,

and begin by observing that f(1) = −1 and f(2) = +1, so that the root is on the interval
(1, 2). Our first approximation is

c1 =
1 + 2

2
=

3

2
± 1

2
.

We compute

f(
3

2
) = (

3

2
)2 − 3

2
− 1 =

9

4
− 5

2
= −1

4
,

so the root is on c ∈ (3
2
, 2). Our second approximation is

c2 =
3

2
+ 2

2
=

7

2

2
=

7

4
± 1

4
.

This still isn’t quite sufficient, so we compute

f(
7

4
) = (

7

4
)2 − 7

4
− 1 =

49

16
− 11

4
=

49

16
− 44

16
> 0,

so our root is on c ∈ (3
2
, 7

4
). Our third approximation is

c3 =
3

2
+ 7

4

2
=

6

4
+ 7

4

2
=

13

8
± 1

8
.

The error is small enough now, so this is our approximation. (By the way, 13
8

= 1.6250 and
the golden mean, to four places, is 1.6180.)
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