
M147 Practice Problems for Exam 2

Exam 2 will cover all sections of Chapter 4. The first ten problems on the exam will be
multiple choice. Work will not be checked on these problems, so you will need to take care
in marking your solutions. For the remaining problems unjustified answers will not receive
credit.

You should memorize the following derivative formulas:

1. d
dx

xr = rxr−1 for any real number r

2. d
dx

sin x = cos x

3. d
dx

cos x = − sin x

4. d
dx

tanx = sec2 x

5. d
dx

ex = ex

6. d
dx

ax = ax ln a, a > 0 (which contains (5) as the case a = e)

7. d
dx

ln x = 1
x

8. d
dx

loga x = 1
x ln a

, a > 0, a 6= 0 (which contains (7) as the case a = e)

9. d
dx

sin−1 x = 1√
1−x2

10. d
dx

cos−1 x = − 1√
1−x2

11. d
dx

tan−1 x = 1
x2+1

Also, be sure you are able to use the following rules of differentiation:

1. Product rule: d
dx

f(x)g(x) = f ′(x)g(x) + f(x)g′(x)

2. Quotient rule: d
dx

f(x)
g(x)

= f ′(x)g(x)−f(x)g′(x)
g(x)2

3. Chain rule: d
dx

f(g(x)) = f ′(g(x))g′(x)

4. Derivative of a function inverse: df−1(x)
dx

= 1
f ′(f−1(x))

.

1. Use the definition of derivative to compute the derivative of the following function at
x = 0.

f(x) =

{

x2 cos( 1
x
), x 6= 0

0, x = 0.

2. Determine whether or not each of the following functions is differentiable at the point
x = 0. In each case, explain why or why not.

2a.

f(x) =

{

x2 + 1, x ≤ 0

x2 − 1, x > 0
.

2b.

f(x) =

{

x2 + 1, x ≤ 0

2x + 1, x > 0
.
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2c.
f(x) = x|x|.

3. Find an equation for the line that is tangent to the given curve at x = 1.

y = x3 + 1.

Sketch a graph of the curve along with this tangent line.

4. A car moves along a straight road. Its location at time t is given by

s(t) = 20t2, 0 ≤ t ≤ 2,

where t is measured in hours and s(t) is measured in kilometers.

4a. Graph s(t) for 0 ≤ t ≤ 2.

4b. Find the average velocity of the car between t = 0 and t = 2. Illustrate the average
velocity on the graph of s(t).

4c. Find the instantaneous velocity of the car at t = 1. Illustrate the instantaneous velocity
on the graph of s(t).

5. Find a point on the curve
y = x2 + x + 1

whose tangent line is parallel to the line

y − 2 = 3(x − 1).

6. Compute the derivative of each of the following functions:

6a.
f(x) = x

2

3 + x−7.

6b.
f(x) = x sin x.

6c.

f(x) =
ex − e−x

ex + e−x
.

6d.

f(x) = (2x +
1

x
)2.

6e.

f(x) = sin−1 5

x2
.

6f.
f(x) = tan−1

√
1 − x4.
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7. Suppose
h(x) = f(x)eg(x),

and f(2) = 4, f ′(2) = 7, g(2) = 0, and g′(2) = 3. Compute h′(2).

8. Compute f ′′(x) if
f(x) = sin(

√
2x).

9. Compute dy
dx

given that
sin(xy) = x.

Find an equation for the line that is tangent to this curve at the point ( 1√
2
,
√

2π
4

).

10. Find d2y
dx2 if

xy − ey = 0.

11. The volumetric flow rate Q (the volume of fluid passing through a given surface per
unit time) of blood moving through a cylindrical blood vessel with radius r is given by the
Hagen-Poiseuille equation

Q =
πr4

8µL
∆p,

where µ denotes blood viscosity, L denotes the length of the vessel, and ∆p denotes the
change in pressure along the vessel. Assume µ, L, and ∆p are held constant, and that the
radius is decreasing at a constant rate −.1 mm/s. Find the rate at which Q is decreasing
when r = 2 mm.

12. In Example 6 of Section 4.8, the author of our textbook discusses an allometric relation-
ship between the area A of a leaf and its stem diameter D:

A = cD1.84,

where c is a constant of proportionality. Find a relationship between the relative growth rate
of the leaf area (i.e., A′(t)

A(t)
) and the relative growth rate of the stem diameter (i.e., D′(t)

D(t)
).

13. An airplane is flying 6 miles above the ground on a flight path that will take it directly
over a radar tracking station. If the distance between the plane and tracking station is
decreasing at a rate of 400 miles per hour when the distance is 10 miles, what is the velocity
of the plane?

14. Let

f(x) = cos x − sin x, −π

4
≤ x ≤ 3π

4
,

and compute df−1

dx
(1).

15. Evaluate the expression

tan(sin−1(
2

3
)).

16. Show that
d

dx
cos−1 x = − 1√

1 − x2
, −1 < x < +1.
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17. Let
y = xtan x, 0 ≤ x <

π

2
,

and compute dy
dx

.

18. Find the linearization of f(x) = 3
√

x at a = 8, and use it to approximate 3
√

9.

19. Use a linear approximation to estimate a value for

ln(.99).

20. Suppose a measurement x = 3 ± .1 is made, and we compute f(3) = 1
4
, where

f(x) =
1

(x − 1)2
.

Approximate the absolute error on f |∆f |, the relative error | ∆f
f(3)

|, and the percentage error

| ∆f
f(3)

|100.

21. Consider a right triangle with hypotenuse length l and sidelengths 3 and x. Suppose x is
measured as x = 4± .05, and use linear approximation to approximate the associated range
of error on l. More precisely, find |∆l| and give the interval [l(4) − |∆l|, l(4) + |∆l|].

Solutions

1. According to the definition,

f ′(0) = lim
h→0

f(h) − f(0)

h
= lim

h→0

h2 cos 1
h

h
= lim

h→0
h cos

1

h
.

Observing now that | cos 1
h
| ≤ 1, we have

−|h| ≤ h cos
1

h
≤ |h|,

and so by the squeeze theorem f ′(0) = 0. (This is a case in which f(x) is differentiable at a
point, but f ′(x) is not continuous at that point.)

2a. We can see that f(x) is not continuous at x = 0 by computing

lim
x→0−

f(x) = 1,

and
lim

x→0+
f(x) = −1,

from which we conclude that the limit of f(x) as x → 0 does not exist. We know that if a
function is not continuous at a point then it cannot be differentiable at that point, so f(x)
is not differentiable at x = 0.
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2b. Method 1. According to the definition of derivative,

f ′(0) = lim
h→0

f(h) − f(0)

h
.

Since f is defined by different functions for h < 0 and for h > 0, we must compute and
compare right and left limits:

lim
h→0−

(h2 + 1) − 1

h
= lim

h→0−
h = 0,

while

lim
h→0+

(2h + 1) − 1

h
= lim

h→0+
2 = 2.

Since these limits do not agree, we can conclude that f(x) is not differentiable at x = 0.

Method 2. In cases for which

f(x) =

{

f1(x) x ≤ a

f2(x) x > a
,

where f1(a) = f2(a), f ′
1(a) = c1, and f ′

2(a) = c2 we can proceed as follows: if c1 6= c2 then f

is not differentiable at x = a, while if c1 = c2 then f is differentiable at x = a and f ′(a) = c1.
Here, f1(x) = x2 + 1 and f2(x) = 2x + 1, so f ′(0) = 0 while f ′

2(0) = 2. We can draw the
same conclusion as we did with Method 1. (Be sure to check all assumptions when using
this method; try it, for example, on (2a).)

2c. In this case,

f ′(0) = lim
h→0

h|h|
h

= lim
h→0

|h| = 0,

and so f is differentiable at x = 0 with f ′(0) = 0.

3. The slope of the tangent line is given by the derivative y′(1) = 3(1)2 = 3. We have, then
y − 2 = 3(x − 1). See Figure 4.

4a. The graphs are sketched below.

4b. The average velocity is

vavg =
s(2) − s(0)

2 − 0
=

80 − 0

2
= 40

km

hr
.

4c. The instantaneous velocity is

vinst = s′(1) = 40
km

hr
.

5. The slope of the tangent line to this curve at any point x is

f ′(x) = 2x + 1,
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(0,1)

(1,0)

y−2=3(x−1)

Figure 1: Figure for Problem 3.

and we must find the value x for which this slope is 3 (the slope of the given line). We solve

2x + 1 = 3

to find x = 1. The point is (1, 3).

6.

6a. Applying the power rule to each summand, we find

d

dx
(x

2

3 + x−7) =
2

3
x− 1

3 − 7x−8.

6b. Applying the product rule, we find

d

dx
x sin x = sin x + x cos x.

6c. Applying the quotient rule, we find

d

dx

ex − e−x

ex + e−x
=

(ex + e−x)(ex + e−x) − (ex − e−x)(ex − e−x)

(ex + e−x)2
=

4

(ex + e−x)2
,

where the final expression was obtained by multiplying out terms in the numerator.

6d. Proceeding with the chain rule, we compute

d

dx
(2x +

1

x
)2 = 2(2x +

1

x
)(2 − 1

x2
) = 8x − 2

x3
.
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Figure 2: Figure for Problem 4.

6e. Proceeding with the chain rule, we compute

d

dx
sin−1 5

x2
=

1
√

1 − ( 5
x2 )2

(−10

x3
) = − 10

x3

√

1 − 25
x4

.

6f. proceeding with the chain rule, we compute

d

dx
tan−1

√
1 − x4 =

1

1 − x4 + 1
· 1

2
√

1 − x4
(−4x3) = − 2x3

(2 − x4)
√

1 − x4
.

7. First,
h′(x) = f ′(x)eg(x) + f(x)eg(x)g′(x),

and so
h′(2) = f ′(2)eg(2) + f(2)eg(2)g′(2) = 7e0 + 4e03 = 7 + 12 = 19.

8. Method 1. Compute directly

f ′(x) = cos(
√

2x)
1

2
√

2x
2x ln 2 =

ln 2

2
cos(

√
2x)

√
2x,

and

f ′′(x) =
ln 2

2

(

− sin(
√

2x)
ln 2

2
2x + cos(

√
2x)

ln 2

2

√
2x

)

=(
ln 2

2
)2

(√
2x cos(

√
2x) − 2x sin(

√
2x).
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Method 2. First, observe that
√

2x = (
√

2)x, which eliminates the need for a nested chain
rule. Now,

d

dx
sin((

√
2)x) = cos((

√
2)x)(

√
2)x ln

√
2,

and

d2

dx2
sin((

√
2)x) = − sin((

√
2)x)((

√
2)x ln

√
2)2 + cos((

√
2)x)((

√
2)x ln

√
2) ln

√
2

= (ln
√

2)2
(

cos((
√

2)x)(
√

2)x − sin((
√

2)x)2x
)

,

which is equivalent to the expression from Method 1.

9. We compute implicitly

d

dx
sin(xy) =

d

dx
x ⇒ cos(xy)

d

dx
(xy) = 1 ⇒ cos(xy)(y + x

dy

dx
) = 1.

Solving for dy
dx

, we find

dy

dx
=

1
cos(xy)

− y

x
.

At the point ( 1√
2
,
√

2π
4

), we have

dy

dx
=

1
cos(π

4
)
−

√
2π
4

1√
2

= 2 − π

2
.

The equation for the tangent line is

(y −
√

2π

4
) = (2 − π

2
)(x − 1√

2
).

10. We begin by computing the x-derivative of the entire equation,

y + x
dy

dx
− ey dy

dx
= 0.

Solving for dy
dx

, we obtain
dy

dx
= − y

x − ey
.

We now compute the second derivative directly from this expression:

d2y

dx2
= −

dy
dx

(x − ey) − y(1 − ey dy
dx

)

(x − ey)2
= −

(− y
x−ey )(x − ey) − y + yey(− y

x−ey )

(x − ey)2

=
2y(x − ey) + y2ey

(x − ey)3
.
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11. First, we compute a derivative with respect to t on both sides, which gives

dQ

dt
=

π∆p

8µL
· 4r3dr

dt
=

π∆p

2µL
r3dr

dt
.

Now we substitute in r = 2 mm and dr
dt

= −.1 mm/s to get

dQ

dt
=

π∆p

2µL
23(−.1) =

4π∆p

µL
(−.1) = − .4π∆p

µL
mm3/s.

12. We begin by computing

A′(t) = c1.84D1.84−1D′(t) = 1.84(cD1.84)
D′(t)

D(t)
.

Here, we observe that A(t) = cD1.84, so that we have

A′(t) = 1.84A(t)
D′(t)

D(t)
⇒ A′(t)

A(t)
= 1.84

D′(t)

D(t)
.

We see that the relative growth rate for the area is 1.84 times the relative growth rate of the
stem diameter.

13. In this case, we are given that dz
dt

= −400, where z denotes the distance between the
plane and the tracking station. If we let x denote the horizontal distance between the plane
and the tracking station, then what we are looking for is dx

dt
, the plane’s velocity. (See Figure

3.)

Airplane

z
6

Tracking Station
x

dx
dt

=?

Figure 3: Figure for Problem 13.

In order to find a relation between dx
dt

and dz
dt

, we begin by relating x and z. We have

x2 + 36 = z2.

Upon differentiation of this equation with respect to t, we find

2x
dx

dt
= 2z

dz

dt
.
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When z = 10, we have x =
√

100 − 36 = 8, and therefore

2(8)
dx

dt
= 2(10)(−400) ⇒ dx

dt
= −8000

16
= −500 mph.

The negative sign indicates that the plane is moving toward the tracking station.

14. First,
f ′(x) = − sin x − cos x.

Also, f(0) = 1 ⇒ f−1(1) = 0. We have, then,

df−1

dx
(1) =

1

f ′(f−1(1))
=

1

f ′(0)
=

1

−1
= −1.

15. For calculations like this it’s often convenient to set

θ = sin−1 2

3

(using θ because this is an angle), so that

sin θ =
2

3
.

(See Figure 4.)

θ

2

3

Figure 4: Figure for Problem 15.

According to the Pythagorean Theorem, the adjacent sidelength is

b =
√

9 − 4 =
√

5.

In this way,

tan(sin−1 2

3
) = tan θ =

2√
5
.

16. Set f(x) = cos x and use the formula

df−1

dx
(x) =

1

f ′(f−1(x))
=

1

− sin(cos−1 x)
.
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In order to evaluate cos−1 x, set θ = cos−1 x (we use θ because this is an angle) and note
that consequently

cos θ = x ⇒ sin θ =
√

1 − cos2 θ =
√

1 − x2.

Notice here that since the range of cos−1 x is [0, π], we know that θ ∈ [0, π], and so we know
sin θ ≥ 0. This chooses the sign in front of

√
1 − cos2 θ. We finally have

1

− sin(cos−1 x)
= − 1√

1 − x2
.

17. If we take the natural logarithm of both sides, we have

ln y = lnxtan x = (tanx)(ln x).

Now differentiate each side with respect to x to obtain

1

y

dy

dx
= (sec2 x)(ln x) +

tan x

x
.

Multiplying this last expression by y = xtan x, we conclude

dy

dx
= xtan x((sec2 x)(ln x) +

tan x

x
).

18. First, the linearization of f(x) at any value a is

L(x) = f(a) + f ′(a)(x − a).

In this case a = 8, and so
L(x) = f(8) + f ′(8)(x − 8).

Here, f(8) = 3
√

8 = 2, and

f ′(x) =
1

3
x−2/3,

so that f ′(8) = 1
3

1
4

= 1
12

. The linearization is

L(x) = 2 +
1

12
(x − 8).

Finally, we approximate 3
√

9 with

L(9) = 2 +
1

12
=

25

12
.

19. We start with f(x) = ln x and use the linear approximation

L(x) = f(a) + f ′(a)(x − a),

where it is reasonable here to take a = 1 (because f(1) is easy to compute). We find

L(x) = ln 1 + 1(x − 1) = x − 1.
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We can now compute
f(.99) ≈ .99 − 1 = −.01.

20. The error formula is
|∆f | ≈ |f ′(3)||∆x|,

and the error is given as |∆x| ≤ .1. In this case,

f ′(x) = − 2

(x − 1)3
,

so that f ′(3) = −2
8

= −1
4
. This gives

|∆f | ≈ 1

4
|∆x| ≤ .1

4
=

1

40
= .025.

The relative error is

| ∆f

f(3)
| ≤

1
40
1
4

=
1

10
= .1,

and the percentage error is 10%.

21. First, the length l is given by the Pythagorean Theorem,

l =
√

32 + x2.

The error formula for l is
|∆l| ≈ |l′(4)||∆x|,

where |∆x| ≤ .05. Here,

l′(x) =
x√

x2 + 9
,

so l′(4) = 4√
25

= 4
5
, and

|l′(4)||∆x| ≤ 4

5
(.05) = .04.

The interval is
[5 − .04, 5 + .04] = [4.96, 5.04].
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