
M147 Practice Problems for Exam 3

Exam 3 will cover sections 5.1, 5.2, 5.3, 5.4, 5.5, 2.1, 2.2, 2.3, and 5.6. Calculators will not be
allowed on the exam. The first ten problems on the exam will be multiple choice. Work will
not be checked on these problems, so you will need to take care in marking your solutions.
For the remaining problems unjustified answers will not receive credit.

1. Sketch a graph of the function

f(x) = |3 − |x||,

on the interval [−4, 1] and determine all local and global extrema on this interval.

2. For f(x) = 1
x

on [1, 5] the Mean Value Theorem asserts that there exists a value c ∈ (1, 5)
so that

f ′(c) = −1

5
.

Find c and depict this graphically.

3. Suppose that f(x) is continuous on the interval [2, 5] and differentiable on the interval
(2, 5). Show that if 1 ≤ f ′(x) ≤ 4 for all x ∈ [2, 5], then 3 ≤ f(5) − f(2) ≤ 12.

4a. For the function

f(x) =
x2

1 + x
; x 6= −1,

find the intervals on which f is increasing and the intervals on which f is decreasing.

4b. For the function defined in (a) find the intervals on which f is concave up and the
intervals on which f is concave down.

5a. For the function
f(x) = x1/3(1 − x)2/3,

find the intervals on which f is increasing and the intervals on which f is decreasing.

5b. For the function defined in (a) find the intervals on which f is concave up and the
intervals on which f is concave down.

6. Suppose that f(x) is twice differentiable in an open interval containing the point x = c and
has a local minimum at the same point, with f ′′(c) > 0. Show that the function g(x) = ef(x)

has a local minimum at x = c.

7. Let

f(x) =
e−x

x − 1
, x 6= 1.

7a. Locate the critical points of f and determine the intervals on which f is increasing and
the intervals on which f is decreasing.

7b. Locate the possible inflection points for f and determine the intervals on which f is
concave up and the intervals on which f is concave down.

7c. Determine the boundary behavior of f by computing limits as x → ±∞.
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7d. Use your information from Parts a-c to sketch a graph of this function.

8. Let
f(x) = 3x3 − 9x + 1, x ∈ [−2, 2].

8a. Locate the critical points of f and determine the intervals on which f is increasing and
the intervals on which f is decreasing.

8b. Locate the possible inflection points for f and determine the intervals on which f is
concave up and the intervals on which f is concave down.

8c. Evaluate f at the critical points, possible inflection points, and boundary points.

8d. Use your information from Parts a-c to sketch a graph of this function.

9. Let
f(x) = 2x5/3 − 5x4/3, x ∈ R.

9a. Locate the critical points of f and determine the intervals on which f is increasing and
the intervals on which f is decreasing.

9b. Locate the possible inflection points for f and determine the intervals on which f is
concave up and the intervals on which f is concave down.

9c. Evaluate f at the critical points, possible inflection points, and boundary points.

9d. Use your information from Parts a-c to sketch a graph of this function.

10. Find non-negative numbers x and y so that x + y = 10 and y
√

x is maximized.

11. A long rectangular sheet of metal, 12 inches wide, is to be made into a rain gutter by
turning up two sides at right angles to the sheet. How many inches should be turned up to
give the gutter its greatest capacity?

12. A piece of wire 10 meters long is cut into two pieces. One piece is bent into a square and
the other is bent into an equilateral triangle. How should the wire be cut so that the total
area enclosed is minimized? How should the wire be cut so that the total area is maximized?

13. Compute the following limits.

13a.

lim
x→0

ex − 1

x
.

13b.
lim

x→∞
(x −

√
x2 − 1).

13c.

lim
x→0

(
1

x
− 1

tan x
).

13d.
lim

x→∞
(

x

x + 1
)x.
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13e.
lim

x→0+
(sin x)x.

14. Write down a general expression an, n = 0, 1, 2, . . . , for the sequence with terms

3

2
,−5

8
,

7

18
,− 9

32
,
11

50
, . . .

15. Compute the limit
lim

n→∞
n

1
n .

16. Solve the recursion equation

an+1 =
1

2
an − 1; a0 = −1

2
,

and compute limx→∞ an. Check your result by computing the fixed point for this equation.

17. Find all fixed points for the recursion

xt+1 =
1

2
xt(

1

2
− xt),

and use the method of cobwebbing to determine which limit will be achieved from the starting
value x0 = −1.

18. Find all fixed points for the recursion

xt+1 =
4x2

t
7
4

+ x2
t

.

On Figure 1, sketch cobweb graphs starting at x0 = 1 and x0 = 5. In each case, compute
limt→∞ xt.

19. Find all fixed points for the recursion

xt+1 = xte
1−xt ,

and use the derivative condition for stability to determine whether each is stable or unstable.

20. The discrete logistic population model is

Nt+1 = Nt + RNt(1 − Nt

K
).

Take R = 1 and K = 10 and show that one drawback of this model is that it can start with
a positive population N0 > 0 and return a negative population N1.
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Figure 1: Graph for Problem 18.

Solutions.

1. First, the graph is given in Figure 2. One way to think about this is to recall

|x| =

{

−x x ≤ 0

+x x > 0.

and write

f(x) = |3 − |x|| =

{

|3 + x| −4 ≤ x ≤ 0

|3 − x| 0 < x ≤ 1
=











−(3 + x) −4 ≤ x ≤ −3

3 + x −3 < x ≤ 0

3 − x 0 < x ≤ 1.

Each individual piece is easy to graph. Alternatively, you would be safe in this case simply
plotting f(x) for each integer x = −4,−3, . . . , 1 and connecting the points with lines. The
global minimum is f(−3) = 0 and the global maximum is f(0) = 3. The other local extrema
are a local maximum at f(−4) = 1 and a local minimum f(1) = 2.

2. First,

f ′(x) = − 1

x2
,

so

− 1

c2
= −1

5
⇒ c =

√
5.

(Note that c = ±
√

5, but we take the positive value because c ∈ (1, 5).) The graph is given
in Figure 3
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Figure 2: Figure for Problem 1 solution.
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Figure 3: Figure for Problem 2.

3. By the Mean Value Theorem, we know that there exists some value c ∈ (2, 5) so that

f ′(c) =
f(5) − f(2)

3
.

Since the largest possible value for f ′(c) on this interval is 4 and since the smallest possible
value for f ′(c) on this interval is 1, we have the inequality

1 ≤ f(5) − f(2)

3
≤ 4.

Multiplying this last inequality by 3, we find

3 ≤ f(5) − f(2) ≤ 12.

4a. First,

f ′(x) =
(1 + x)2x − x2

(1 + x)2
=

x2 + 2x

(1 + x)2
,

and from this we can identify the critical points are x = −2,−1, 0. Plotting this on a
number line, we find that f is decreasing on [−2,−1)∪ (−1, 0] (note that the point where f
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is undefined is excluded, but the other endpoints are included), and increasing on (−∞,−2]∪
[0, +∞).

4b. We compute

f ′′(x) =
(1 + x)2(2x + 2) − (x2 + 2x)2(1 + x)

(1 + x)4
=

2(x + 1)2 − 2(x2 + 2x)

(1 + x)3
=

2

(1 + x)3
.

The only possible point of inflection is x = −1, and plotting this on a number line we find
f is concave down on (−∞,−1) and concave up on (−1, +∞).

5a. Here,

f ′(x) =
1

3
x−2/3(1 − x)2/3 + x1/3 2

3
(1 − x)−1/3(−1)

=
1
3
− x

x2/3(1 − x)1/3
,

and the critical points are 0, 1
3
, and 1. We find

f is increasing on (−∞,
1

3
] ∪ [1,∞)

f is decreasing on [
1

3
, 1].

5b. Working from (a), we compute

f ′′(x) =
−x2/3(1 − x)1/3 − (1

3
− x)

(

2
3
x−1/3(1 − x)1/3 + 1

3
x2/3(1 − x)−2/3(−1)

)

x4/3(1 − x)2/3

= −
2
9

x5/3(1 − x)4/3
,

where to get the second expression we multiplied the numerator and denominator of the first
by x1/3(1 − x)2/3. The possible inflection points are 0 and 1. We conclude

f is concave up on (−∞, 0)

f is concave down on (0,∞).

6. By our assumptions on f , we know f ′(c) = 0, and we are also given that f ′′(c) < 0. We
need to show that precisely the same two conditions hold for g(x) = ef(x). We have

g′(x) = ef(x)f ′(x),

from which we see that
g′(c) = ef(c)f ′(c) = 0.

Next,
g′′(x) = ef(x)f ′(x)2 + ef(x)f ′′(x),
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from which we see that

g′′(c) = ef(c)f ′(c)2 + ef(c)f ′′(c) = ef(c)f ′′(c) < 0,

where we have used the observation that f ′(c) = 0 and the fact that ef(c) > 0.

7a. Compute

f ′(x) = − xe−x

(x − 1)2
,

and observe that the critical points are x = 0, 1. We see that f is increasing on (−∞, 0] and
decreasing on [0, 1) ∪ (1,∞). (We omit x = 1 because f isn’t defined there.)

7b. Compute

f ′′(x) =
e−x(x2 + 1)

(x − 1)3
,

and observe that the only possible inflection point is x = 1. We see that f(x) is concave
down on (−∞, 1) and concave up on (1,∞).

7c. For the boundary behavior, we have

lim
x→−∞

e−x

x − 1
= −∞

lim
x→+∞

e−x

x − 1
= 0.

7d. In order to anchor the plot, we evaluate f at the critical points, the possible inflection
points and the endpoints. We have

f(0) = − 1

lim
x→1−

e−x

x − 1
= −∞

lim
x→1+

e−x

x − 1
= + ∞.

The boundary behavior was obtained in Part c. The graph is sketched in Figure 4.

8a. First,
f ′(x) = 9x2 − 9,

so that the critical points are x = ±1. We find that

f is increasing on [−2,−1] ∪ [1, 2]

f is decreasing on [−1, 1].

8b. Next,
f ′′(x) = 18x,
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Figure 4: Figure for Problem 7.

so the only possible inflection point is x = 0. We find that

f is concave up on (0,∞)

f is concave down on (−∞, 0).

8c. The evaluations are

f(−2) = − 5

f(−1) =7

f(0) = 1

f(1) = − 5

f(2) = 7.

8d. The graph is in Figure 5.

9a. We compute

f ′(x) =
10

3
x2/3 − 20

3
x1/3 =

10

3
x1/3(x1/3 − 2),

so the critical points are x = 0, 8. We find

f is increasing on (−∞, 0] ∪ [8,∞)

f is decreasing on [0, 8].

9b. Next,

f ′′(x) =
20

9
x−1/3 − 20

9
x−2/3 =

20x1/3 − 20

9x2/3
,
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Figure 5: Figure for Problem 8.

and we see that the possible inflection points are x = 0, 1. We find

f is concave up on (1,∞)

f is concave down on (−∞, 0) ∪ (0, 1).

9c. The evaluations are as follows:

lim
x→−∞

f(x) = −∞

f(0) = 0

f(1) = − 3

f(8) = − 16

lim
x→∞

f(x) = + ∞.

The limits are clear since for x large x5/3 > x4/3.

9d. The graph is given in Figure 6.

10. If we write y = 10 − x, we want to maximize

f(x) =
√

x(10 − x) = 10
√

x − x3/2,

with 0 ≤ x ≤ 10. We compute

f ′(x) =
10

2
√

x
− 3

2

√
x =

10 − 3x

2
√

x
,

so that the critical points are x = 0, 10
3
. Finally, to see where the maximum occurs, we

compute

f(0) = 0

f(
10

3
) =

√

10

3
(10 − 10

3
) =

√

10

3
· 20

3

f(10) =0.
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Figure 6: Graph for Problem 9.

We conclude that the numbers are 10
3

and 20
3
.

11. Let x denote the width of sheet to be turned up on one side and let y denote the width
of sheet left flat. If the length of the sheet is L then the volume is

V = xyL,

where y can be eliminated by the relation y = 12 − 2x. (For this problem it seems fairly
natural to avoid bringing up the variable y, but I’ve used it here for consistency with our
standard process. Also, it’s clearly reasonable to omit L and work with the area A(x) = xy.)
In this way the function we would like to maximize is

V (x) = x(12 − 2x)L, 0 ≤ x ≤ 6.

We find the critical points by computing

dV

dx
= (12 − 4x)L = 0 ⇒ x = 3.

Evaluating

V (0) = 0

V (3) = 18L

V (6) = 0,

we conclude that the maximum capacity occurs when x = 3 inches are turned up on either
side.

12. Let x be the length of each side of the square, and let y be the length of each side of the
equilateral triangle. Then the total length of wire is

10 = 4x + 3y,
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while the total area is

A = area of square + area of triangle = x2 +

√
3

4
y2.

(You can derive the area formula for an equilateral triangle from the formula 1
2
bh and either

the sidelengths for a 30-60-90 triangle or the Pythagorean theorem. See figure.)

y y

y y

22

3

2
y

Figure 7: Figure for Problem 12.

Solving our constraint for y, we have

y =
10

3
− 4

3
x,

so that

A(x) = x2 +

√
3

4
(
10

3
− 4

3
x)2, 0 ≤ x ≤ 10

4
.

Proceeding as usual, we compute

A′(x) = 2x +

√
3

2
(
10

3
− 4

3
x)(−4

3
) ⇒ x(2 +

8
√

3

9
) =

20
√

3

9
.

We conclude that

x =
20
√

3

18 + 8
√

3
=

10
√

3

9 + 4
√

3
.

From our expression for A′(x) we see that A′(x) < 0 for x < 10
√

3
9+4

√
3
, while A′(x) > 0 for

x < 10
√

3
9+4

√
3
. We conclude that A(x) decreases for all x to the left of this point and increases

for all x to the right of it, and is consequently a global minimum. Notice particularly that

0 <
10
√

3

9 + 4
√

3
<

10
√

3

4
√

3
=

10

4
,

so this value of x is on our domain 0 ≤ x ≤ 10
4
. This says that the area is minimized if the

length of wire taken for the square is

4x =
40
√

3

9 + 4
√

3
.
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In order to find the global maximum, we must check A(x) at the two endpoints. We have

A(0) =
100

√
3

36

A(
10

4
) =

100

16
.

Notice that
100

√
3

36
<

100 · 2
36

=
100

18
<

100

16
,

so A(10
4
) is larger, and this corresponds with putting all of the wire into the square.

13a.

lim
x→0

ex − 1

x
= lim

x→0

ex

1
= 1.

13b.

lim
x→∞

(x −
√

x2 − 1) = lim
x→∞

x(1 −
√

1 − 1

x2
) = lim

x→∞

1 −
√

1 − 1
x2

1
x

.

We can now apply l’Hospital’s rule to find that this limit is

lim
x→∞

−1
2
(1 − 1

x2 )
− 1

2 ( 2
x3 )

− 1
x2

= 0.

13c. In this case, we begin by writing tan x = sinx
cos x

and finding a common denominator.

lim
x→0

(
1

x
− 1

tanx
) = lim

x→0
(
1

x
− cos x

sin x
) = lim

x→0

sin x − x cos x

x sin x
.

We can now apply L’Hospital’s rule repeatedly

lim
x→0

cos x − cos x + x sin x

sin x + x cos x
= lim

x→0

sin x + x cos x

cos x + cos x − x sin x

= 0.

13d.
lim

x→∞
(

x

x + 1
)x = lim

x→∞
eln( x

x+1
)x

= lim
x→∞

ex ln( x

x+1
) = elimx→∞ x ln( x

x+1
).

We compute the limit in the exponent as

lim
x→∞

ln( x
x+1

)
1
x

= lim
x→∞

ln x − ln(x + 1)
1
x

= lim
x→∞

1
x
− 1

x+1

− 1
x2

= lim
x→∞

1
x(x+1)

− 1
x2

= lim
x→∞

− x2

x2 + x
= −1.

We conclude
lim
x→∞

(
x

x + 1
)x = e−1.
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Note: It’s slicker—but for our purposes less instructive—to simply notice that this is the
inverse of the limit

e = lim
x→∞

(1 +
1

x
)x.

13e. We have

lim
x→0+

(sin x)x = lim
x→0+

eln(sin x)x

= lim
x→0+

ex ln(sin x) = e
lim

x→0+
ln(sin x)

1
x

= e
lim

x→0+

cos x

sin x

−
1

x2 = elim
x→0+ −x

2 cos x

sin x = e0 = 1,

where the final limit can be computed either using L’Hospital’s rule once more or using our
known trig limits.

14. First, we get the sign right with (−1)n, n = 0, 1, 2, . . . , and we observe that the numerator
is 2n+3, for n = 0, 1, 2, . . . . The easiest way to understand the denominator is to factor out
the common factor 2 (a useful trick in general). We find

an = (−1)n 2n + 3

2(n + 1)2
, n = 0, 1, 2, . . .

15. The important thing to remember here is simply that you compute this sort of limit
precisely as with limits in x. More precisely,

lim
n→∞

n
1
n = lim

x→∞
x

1
x .

For the limit in x we can apply l’Hospital’s Rule:

lim
x→∞

x
1
x = lim

x→∞
eln x

1
x = elimx→∞

1
x

ln x = elimx→∞

1
x = e0 = 1.

16. We solve this by iterating

a1 =
1

2
(−1

2
) − 1 = −5

4

a2 =
1

2
(−5

4
) − 1 = −13

8

a3 =
1

2
(−13

8
) − 1 = −29

16
...
...

We recognize the pattern as

an = −2n+2 − 3

2n+1
.

For the limit, we compute
lim

n→∞
an = −2,

which is also the fixed point for this equation.
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17. First, the fixed point equation is

x =
1

2
x(

1

2
− x) =

1

4
x − 1

2
x2,

so that the fixed points are

3

4
x +

1

2
x2 = x(

3

4
+

1

2
x) = 0 ⇒ x = 0,−3

2
.

For the cobwebbing, we can plot f(x) = 1
4
x− 1

2
x2 = x(1

4
− 1

2
x) by noticing that it’s a parabola

opening downward with x-intercepts at x = 0 and x = 1
2
, and therefore has a maximum value

at (the midpoint) 1
4

of 1
4
(1

4
− 1

2
1
4
) = 1

4
1
8

= 1
32

. We find that for x0 = −1 (see the figure)

lim
t→∞

xt = 0.

−1/2−1−3/2 1/2

−3/2

45 line

−1/2

o

Figure 8: Figure for Problem 17.

18. First, the fixed points are solutions of

x =
4x2

7
4

+ x2
.

First, we recognize that x = 0 works, and then divide by x to get

1 =
4x

7
4

+ x2
⇒ x2 +

7

4
= 4x.

In this way, the fixed points are solutions of the quadradic equation

x2 − 4x +
7

4
= 0.
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The roots are

x =
4 ±

√

42 − 4 · 7
4

2
= 2 ±

√
9

2
=

1

2
,
7

2
.

(Notice that these values agree with the given figure.) The cobweb graph is sketched in
Figure 9. We see that in both cases of x0

lim
t→∞

xt =
7

2
.
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Figure 9: Figure for Problem 18 solution.

19. First, in order to find the fixed points we solve

x = xe1−x ⇒ x(1 − e1−x) = 0,

from which we have the fixed points
x = 0, 1.

In order to evaluate the stability of these points, we set

f(x) = xe1−x,

and compute
f ′(x) = e1−x + xe1−x(−1) = e1−x(1 − x).

We have:

f ′(0) = e ⇒ |f ′(0)| > 1 ⇒ x = 0 is unstable

f ′(1) = 0 ⇒ |f ′(0)| < 1 ⇒ x = 1 is asymptotically stable
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20. First, for R = 1 and K = 10 the model becomes

Nt+1 = Nt + Nt(1 − Nt

10
).

We see that if Nt is large the second term will be negative, and as a convenient value we can
take N0 = 50. We find

N1 = 50 + 50(1 − 5) = 50 − 200 = −150.
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