
M151B, Fall 2008, Practice Problems for Exam 2

Calculators will not be allowed on the exam.

1. Let

f(x) = cos x − sin x, −π

4
≤ x ≤ 3π

4
,

and compute df−1

dx
(1).

2. Show that
d

dx
cos−1 x = − 1√

1 − x2
, −1 < x < +1.

3. Let
y = xtan x, 0 ≤ x <

π

2
,

and compute dy

dx
.

4. Use a linear approximation to estimate a value for

ln(.99).

5. Consider a right triangle with hypotenuse length l and sidelengths 3 and x. Suppose x is
measured as x = 4± .05, and use linear approximation to approximate the associated range
of error on l.

6. Suppose that f(x) is continuous on the interval [2, 5] and differentiable on the interval
(2, 5). Show that if 1 ≤ f ′(x) ≤ 4 for all x ∈ [2, 5], then 3 ≤ f(5) − f(2) ≤ 12.

7. Suppose that f(x) is twice differentiable in an open interval containing the point x = c

and has a local minimum at the same point. Show that the function g(x) = ef(x) has a local
minimum at x = c.

8. Let

f(x) =
e−x

x − 1
, x 6= 1.

8a. Locate the critical points of f and determine the intervals on which f is increasing and
the intervals on which f is decreasing.

8b. Locate the possible inflection points for f and determine the intervals on which f is
concave up and the intervals on which it is concave down.

8c. Determine the boundary behavior of f by computing limits as x → ±∞.

8d. Use your information from Parts a-c to sketch a graph of this function.

9. A long rectangular sheet of metal, 12 inches wide, is to be made into a rain gutter by
turning up two sides at right angles to the sheet. How many inches should be turned up to
give the gutter its greatest capacity?

10. A piece of wire 10 meters long is cut into two pieces. One piece is bent into a square and
the other is bent into an equilateral triangle. How should the wire be cut so that the total
area enclosed is minimized? How should the wire be cut so that the total area is maximized?
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11. Compute the following limits.

11a.

lim
x→0

ex − 1

x
.

11b.
lim

x→∞
(x −

√
x2 − 1).

11c.
lim

x→∞
(

x

x + 1
)x.

Solutions

1. First,
f ′(x) = − sin x − cos x.

Also, f(0) = 1 ⇒ f−1(1) = 0. We have, then,

df−1

dx
(1) =

1

f ′(f−1(1))
=

1

f ′(0)
=

1

−1
= −1.

2. Set f(x) = cos x and use the formula

df−1

dx
(x) =

1

f ′(f−1(x))
=

1

− sin(cos−1 x)
.

In order to evaluate cos−1 x, set θ = cos−1 x (we use θ because this is an angle) and note
that consequently

cos θ = x ⇒ sin θ =
√

1 − cos2 θ =
√

1 − x2.

Notice here that since the range of cos−1 x is [0, π], we know that θ ∈ [0, π], and so we know
sin θ ≥ 0. This chooses the sign in front of

√
1 − cos2 θ. We finally have

1

− sin(cos−1 x)
= − 1√

1 − x2
.

3. If we take the natural logarithm of both sides, we have

ln y = lnxtan x = (tanx)(ln x).

Now differentiate each side with respect to x to obtain

1

y

dy

dx
= (sec2 x)(ln x) +

tan x

x
.

Multiplying this last expression by y = xtan x, we conclude

dy

dx
= xtan x((sec2 x)(ln x) +

tan x

x
).
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4. We start with f(x) = ln x and use the linear approximation

f(x) = f(a) + f ′(x)(x − a),

where it is reasonable here to take a = 1. We find

f(x) ≈ ln 1 + 1(x − 1) = x − 1.

We can now compute
f(.99) ≈ .99 − 1 = −.01.

(The exact value, to four decimal places, is -.0101.)

5. First, the length l is given by the Pythagorean Theorem,

l =
√

32 + x2.

By linear approximation, we have

l(x + ∆x) − l(x) ≈ l′(x)∆x,

where |l(x + ∆x) − l(x)| is the absolute error, x = 4, ∆x = .05 and

l′(x) =
x√

x2 + 9
.

We have, then,

l′(4)(.05) =
4

5
(.05) = .04.

We conclude
l(4 ± .05) = 5 ± .04.

6. By the Mean Value Theorem, we know that there exists some value c ∈ (2, 5) so that

f ′(c) =
f(5) − f(2)

3
.

Since the largest possible value for f ′(c) on this interval is 4 and since the smallest possible
value for f ′(c) on this interval is 1, we have the inequality

1 ≤ f(5) − f(2)

3
≤ 4.

Multiplying this last inequality by 3, we find

3 ≤ f(5) − f(2) ≤ 12.

7. By our assumptions on f , we know f ′(c) = 0 and f ′′(c) > 0. We need to show that
precisely the same two conditions hold for g(x) = ef(x). We have, first

g′(c) = ef(c)f ′(c) = 0,
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and second
g′′(c) = ef(c)f ′(c)2 + ef(c)f ′′(c) = ef(c)f ′′(c) > 0,

where in arriving at this last inequality we have observed that ef(x) > 0 for any finite value
of f(x).

8a. Compute

f ′(x) = − xe−x

(x − 1)2
,

and observe that the critical points are x = 0, 1. We see that f is increasing on (−∞, 0] and
decreasing on [0, 1) ∪ (1,∞). (We omit x = 1 because f isn’t defined there.)

8b. Compute

f ′′(x) =
e−x(x2 + 1)

(x − 1)3
,

and observe that the only possible inflection point is x = 1. We see that f(x) is concave
down on (−∞, 1) and concave up on (1,∞).

8c. For the boundary behavior, we have

lim
x→−∞

e−x

x − 1
= −∞

lim
x→+∞

e−x

x − 1
= 0.

8d. In order to anchor the plot, we evaluate f at the critical points, the possible inflection
points and the endpoints. We have

f(0) = − 1

lim
x→1−

e−x

x − 1
= −∞

lim
x→1+

e−x

x − 1
= + ∞.
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The boundary behavior was obtained in Part c. Here’s a sketch:

9. Let x denote the width of sheet to be turned up on one side and let y denote the width
of sheet left flat. If the length of the sheet is L then the volume is

V = xyL,

where y can be eliminated by the relation y = 12 − 2x. (For this problem it seems fairly
natural to avoid bringing up the variable y, but I’ve used it here for consistency with our
standard process.) In this way the function we would like to maximize is

V (x) = x(12 − 2x)L, 0 ≤ x ≤ 6.

We find the critical points by computing

dV

dx
= (12 − 4x)L = 0 ⇒ x = 3.

Evaluating

V (0) = 0

V (3) = 18

V (6) = 0,

we conclude that the maximum capacity occurs when x = 3 inches are turned up on either
side.

10. Let x be the length of each side of the square, and let y be the length of each side of the
equilateral triangle. Then the total length of wire is

10 = 4x + 3y,

while the total area is

A = area of square + area of triangle = x2 +

√
3

4
y2.
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(You can derive the area formula for an equilateral triangle from the formula 1
2
bh and either

the sidelengths for a 30-60-90 triangle or the Pythagorean theorem.) Solving our constraint
for y, we have

y =
10

3
− 4

3
x,

so that

A(x) = x2 +

√
3

4
(
10

3
− 4

3
x)2, 0 ≤ x ≤ 10

4
.

Proceeding as usual, we compute

A′(x) = 2x +

√
3

2
(
10

3
− 4

3
x)(−4

3
) ⇒ x(2 +

8
√

3

9
) =

20
√

3

9
.

We conclude that

x =
20
√

3

18 + 8
√

3
=

10
√

3

9 + 4
√

3
.

From our expression for A′(x) we see that A′(x) < 0 for x < 10
√

3
9+4

√
3
, while A′(x) > 0 for

x < 10
√

3
9+4

√
3
. We conclude that A(x) decreases for all x to the left of this point and increases

for all x to the right of it, and is consequently a global minimum. This says that the area is
minimized if the length of wire taken for the square is

4x =
40
√

3

9 + 4
√

3
.

In order to find the global maximum, we must check A(x) at the two endpoints. We have

A(0) =
100

√
3

36

A(
10

4
) =

100

16
.

Clearly, A(10
4
) is larger, and this corresponds with putting all of the wire into the square.

11a.

lim
x→0

ex − 1

x
= lim

x→0

ex

1
= 1.

11b.

lim
x→∞

(x −
√

x2 − 1) = lim
x→∞

x(1 −
√

1 − 1

x2
) = lim

x→∞

1 −
√

1 − 1
x2

1
x

.

We can now apply l’Hospital’s rule to find that this limit is

lim
x→∞

−1
2
(1 − 1

x2 )
− 1

2 ( 2
x3 )

− 1
x2

= 0.

11c.
lim

x→∞
(

x

x + 1
)x = lim

x→∞
eln( x

x+1
)x

= lim
x→∞

ex ln( x

x+1
) = elimx→∞ x ln( x

x+1
).
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We compute the limit in the exponent as

lim
x→∞

ln( x
x+1

)
1
x

= lim
x→∞

ln x − ln(x + 1)
1
x

= lim
x→∞

1
x
− 1

x+1

− 1
x2

= lim
x→∞

1
x(x+1)

− 1
x2

= lim
x→∞

− x2

x2 + x
= −1.

We conclude
lim
x→∞

(
x

x + 1
)x = e−1.

Note: It’s slicker—but for our purposes less instructive—to simply notice that this is the
inverse of the limit

e = lim
x→∞

(1 +
1

x
)x.
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