
M151B Practice Problems for Exam 3

Calculators will not be allowed on the exam. On the exam you will be given the following
identities:

n
∑

k=1

k =
n(n + 1)

2
;

n
∑

k=1

k2 =
n(n + 1)(2n + 1)

6
;

n
∑

k=1

k3 =
(n(n + 1)

2

)2

.

1. Write down a general expression for the sequence with terms

3

2
,−5

8
,

7

18
,− 9

32
,
11

50
, . . .

2. Find all fixed points for the recursion

an+1 =
1

2
an(

1

2
− an),

and use the method of cobwebbing to determine which limit will be achieved from the starting
value a0 = −1.

3. Find all fixed points for the recursion

xt+1 = xte
1−xt ,

and determine whether each is asymptotically stable or unstable.

4. The discrete logistic population model is

Nt+1 = Nt + RNt(1 − Nt

K
).

Take R = 1 and K = 10 and show that one drawback of this model is that it can start with
a positive population N0 > 0 and return a negative population N1.

5. Use a geometric argument to evaluate the integral

∫ 1

−1

|x|dx.

6. Use the method of Riemann sums to evaluate
∫ 4

1

1 − x2dx.

7. Express the integral
∫ 2

0

√
1 + sin xdx

as the limit of a Riemann sum. Be sure to define all quantities that appear in your expression.
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8. Determine whether or not the Fundamental Theorem of Calculus can be applied to the
function

f(x) =

{

x 0 ≤ x ≤ 1

2 − x 1 < x ≤ 2
,

on the interval [0, 2]. If so, find the anti-derivative F (x) and use it to compute

∫ 2

0

f(x)dx.

9. Compute

d

dx

∫ x2+1

cos x

e−x2

dx.

10. Evaluate the following indefinite integrals.

10a.
∫

cos(2x − 1)dx.

10b.
∫

x

x2 + 1
dx.

11. Evaluate the following definite integrals.

11a.
∫

√
π

0

x sin(x2)dx.

11b.
∫ e

1

√
ln x

x
dx.

12. Evaluate the following indefinite integral

∫

sin3 x cos x√
1 + sin2 x

dx.

13. Find the total area between the curves y = x2 and y = 2 − x for x ∈ [0, 2].

14. Suppose that for each value x a certain solid has cross-sectional area A(x) and density
ρ(x). (The density of an object is its mass per unit volume, ρ = m

V
.) Find a formula for the

total mass of such an object on the interval [a, b].

15. Find the volume of the solid obtained by rotating about the x-axis the area between the
graph of f(x) =

√
x and the x-axis for x ∈ [0, 1].

16. Find the volume obtained by rotating the region between y = 2 and y =
√

x for x ∈ [0, 4]
about the x-axis.
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17. Find the volume obtained by rotating the region bounded by the curves y2 = x and
y = x

2
about the y-axis.

18. Suppose the base of a certain solid is the region in the xy-plane bounded by y = 4 and
y = x2. Find the volume of the solid created if every cross section is a square perpendicular
to the x-axis.

19. Compute the average value of the function

f(x) = x +
1

x

for x ∈ [1, 3].

20. Determine the length of the graph of f(x) = x
3

2 + 1 for x ∈ [0, 4].

Solutions.

1. First, we get the sign right with (−1)n+1, n = 1, 2, . . . , and we observe that the numerator
is 2n + 1, for n = 1, 2, . . . . The easiest way to understand the denominator is to factor out
the common factor 2 (a useful trick in general). We find

an = (−1)n+12n + 1

2n2
, n = 1, 2, . . .

2. First, the fixed point equation is

a =
1

2
a(

1

2
− a) =

1

4
a − 1

2
a2,

so that the fixed points are

3

4
a +

1

2
a2 = a(

3

4
+

1

2
a) = 0 ⇒ a = 0,−3

2
.

For the cobwebbing, we can plot f(a) = 1
4
a− 1

2
a2 = a(1

4
− 1

2
a) by noticing that it’s a parabola

opening downward with x-intercepts at a = 0 and a = 1
2
, and therefore has a maximum value

at (the midpoint) 1
4

of 1
4
(1

4
− 1

2
1
4
) = 1

4
1
8

= 1
32

. We find that for a0 = −1 (see the figure)

lim
n→∞

an = 0.
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3. First, in order to find the fixed points we solve

x = xe1−x ⇒ x(1 − e1−x) = 0,

from which we have the fixed points
x = 0, 1.

In order to evaluate the stability of these points, we set

f(x) = xe1−x,

and compute
f ′(x) = e1−x + xe1−x(−1) = e1−x(1 − x).

We have:

f ′(0) = e ⇒ |f ′(0)| > 1 ⇒ x = 0 is unstable

f ′(1) = 0 ⇒ |f ′(0)| < 1 ⇒ x = 1 is asymptotically stable

4. First, for R = 1 and K = 10 the model becomes

Nt+1 = Nt + Nt(1 − Nt

10
).

We see that if Nt is large the second term will be negative, and as a convenient value we can
take N0 = 50. We find

N1 = 50 + 50(1 − 5) = 50 − 200 = −150.

5. The graph of the function f(x) = |x| looks like a V on [−1, 1], and the area under the
curve consists of two triangles with equal areas. Each triangle has baselength 1 and height
1, and so the area of each is 1

2
. We conclude

∫ 1

−1

|x|dx = 1.

6. In this case ∆x = b−a
n

= 4−1
n

= 3
n
, and we use right endpoints xk = 1 + k∆x. We have

An =

n
∑

k=1

[1 − (1 +
3k

n
)2]

3

n
=

n
∑

k=1

[1 − (1 + 6
k

n
+ 9

k2

n2
)]

3

n

=

n
∑

k=1

−18k

n2
− 27k2

n3
= −18

n2

n
∑

k=1

k − 27

n3

n
∑

k=1

k2

= − 18

n2

n(n + 1)

2
− 27

n3

n(n + 1)(2n + 1)

6
.

We conclude
lim

n→∞
An = −9 − 9 = −18.
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7. The Riemann sum is
∫ 2

0

√
1 + sin xdx = lim

‖P‖→0

n
∑

k=1

√

1 + sin ck△xk,

where P is a partition of the interval [0, 2] with points P = [x0, x1, ...., xn], ‖P‖ is the norm
of P (‖P‖ = maxk ∆xk), ∆xk = xk − xk−1, and ck ∈ [xk−1, xk] for each k = 1, ..., n.

8. This function is continuous on the interval [0, 2] and so FTC applies. In order to compute
the anti-derivative, we first observe that for x ∈ [0, 1] we have

F (x) =

∫ x

0

ydy =
x2

2
,

as expected. For x ∈ [1, 2] we must keep in mind that we have

F (x) =

∫ x

0

f(y)dy =

∫ 1

0

ydy +

∫ x

1

2 − ydy =
1

2
+ (2x − x2

2
) − 3

2
= (2x − x2

2
) − 1.

That is,

F (x) =

{

x2

2
0 ≤ x ≤ 1

(2x − x2

2
) − 1 1 < x ≤ 2

.

Applying FTC, we conclude

∫ 2

0

f(x)dx = F (2) − F (0) = 1.

(This can easily be verified by a geometric argument.)

9. According to Leibniz’ rule, we have

d

dx

∫ x2+1

cos x

e−x2

dx = e−(x2+1)22x − e− cos2 x(− sin x).

10a. Use the substitution u = 2x − 1, so that du
dx

= 2. The integral becomes

1

2

∫

cos udu =
1

2
sin u + C =

1

2
sin(2x − 1) + C.

10b. Use the substitution u = x2 + 1, so that du
dx

= 2x. The integral becomes

∫

x

u

du

2x
=

1

2

∫

du

u
=

1

2
ln |u| + C =

1

2
ln |x2 + 1| + C,

where since x2 + 1 is always positive the absolute value can be dropped.

11a. Use the substitution u = x2, so that du
dx

= 2x. The integral becomes

∫ π

0

x sin(u)
du

2x
=

1

2

∫ π

0

sin udu = −1

2
cos u

∣

∣

∣

π

0
= 1.
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11b. Use the substitution u = ln x, so that du
dx

= 1
x
. The integral becomes

∫ e

1

√
u

x
xdu =

∫ 1

0

u
1

2 du =
u

3

2

3
2

∣

∣

∣

1

0
=

2

3
.

(Alternatively, Problems 10 and 11 can be solved with fast substitution.)

12. We make the substitution u = 1 + sin2 x, with du = 2 sin x cos xdx, and we find

∫

sin3 x cos x√
u

du

2 sin x cos x
=

1

2

∫

sin2 x√
u

du.

At this point we observe that sin2 x = u − 1, so we have

1

2

∫

u − 1√
u

du =
1

2

∫

u1/2 − u−1/2du =
1

2
[
u3/2

3/2
− u1/2

1/2
] =

1

3
(1 + sin2 x)3/2 − (1 + sin2 x)1/2 + C.

13. Plotting these two curves together, we can see that they intersect at x = 1, and that for
x < 1, y = 2 − x is larger, while for x > 1, y = x2 is larger. The area between the curves is

A =

∫ 1

0

(2 − x) − x2dx +

∫ 2

1

x2 − (2 − x)dx

=(2x − x2

2
− x3

3
)
∣

∣

∣

1

0
+ (

x3

3
− 2x +

x2

2
)
∣

∣

∣

2

1

=3.

14. As when developing our formula for the volume of such an object, we consider a par-
tition of the interval [a, b], P = [x0, x1, . . . , xn]. On the general subinterval [xk−1, xk] we
approximately have a cylinder with base area A(ck) and constant density ρ(ck), where ck is
any value ck ∈ [xk−1, xk]. The mass of such a cylinder is ρ(ck)V = ρ(ck)A(ck)∆xk, and so if
we sum up these masses we have

Mn =
n

∑

k=1

ρ(ck)A(ck)∆xk.

Taking now a limit as the partition size goes to 0, we find

M = lim
‖P‖→0

n
∑

k=1

ρ(ck)A(ck)∆xk =

∫ b

a

ρ(x)A(x)dx.

15. Since the object is being created by rotation, the cross section at each point x is a circle
with radius f(x). The area of the cross section at point x is A(x) = πf(x)2 = πx. Recalling
that our volume formula is

V =

∫ b

a

A(x)dx,
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we compute

V =

∫ 1

0

πxdx = π
1

2
x2

∣

∣

∣

1

0
=

π

2
.

16. In this case, we use the method of washers, for which we have

V = π

∫ 4

0

f(x)2 − g(x)2dx

= π

∫ 4

0

22 − (
√

x)2dx = π
[

4x − x2

2

]4

0

= 8π.

17. First, we find the points at which these curves intersect by solving

(
x

2
)2 = x ⇒ x2

4
− x = 0 ⇒ x(

x

4
− 1) = 0 ⇒ x = 0, 4.

The points of intersection are (0, 0) and (4, 2). If we rotate the region between these curves
about the y-axis the line x = 2y describes the outer radius while the parabola x = y2

describes the inner radius. The volume is

V = π

∫ 2

0

(2y)2 − (y2)2dy = π

∫ 2

0

4y2 − y4dy = π[
4

3
y3 − 1

5
y5]20 = π[

32

3
− 32

5
] =

64π

15
.

18. One side of each square runs from the curve y = x2 to the line y = 4, and so the
sidelength is 4 − x2. The cross-sectional area is consequently

A(x) = (4 − x2)2,

and the volume is (by symmetry)

V = 2

∫ 2

0

(4 − x2)2dx = 2

∫ 2

0

16 − 8x2 + x4dx = 2(16x − 8

3
x3 +

x5

5
)
∣

∣

∣

2

0
=

512

15
.

19. We compute

favg =
1

2

∫ 3

1

x + x−1dx =
1

2
[
1

2
x2 + ln |x|]

∣

∣

∣

3

1
=

1

2
[
9

2
+ ln 3] − 1

2
[
1

2
] = 2 + ln

√
3.

20. First, observe that

f ′(x) =
3

2
x

1

2 .

The formula for arclength is

L =

∫ b

a

√

1 + f ′(x)2dx,
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so we have

L =

∫ 4

0

√

1 +
9

4
xdx.

We carry out this integral with substitution, setting u = 1+ 9
4
x so that du

dx
= 9

4
. The integral

becomes

L =

∫ 10

1

u
1

2

4

9
du =

4

9

u
3

2

3
2

∣

∣

∣

10

1
=

8

27
(10

3

2 − 1).
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