M151B Practice Problems for Exam 3

Calculators will not be allowed on the exam. On the exam you will be given the following identities:

$$
\sum_{k=1}^{n} k=\frac{n(n+1)}{2} ; \quad \sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6} ; \quad \sum_{k=1}^{n} k^{3}=\left(\frac{n(n+1)}{2}\right)^{2} .
$$

1. Write down a general expression for the sequence with terms

$$
\frac{3}{2},-\frac{5}{8}, \frac{7}{18},-\frac{9}{32}, \frac{11}{50}, \ldots
$$

2. Find all fixed points for the recursion

$$
a_{n+1}=\frac{1}{2} a_{n}\left(\frac{1}{2}-a_{n}\right),
$$

and use the method of cobwebbing to determine which limit will be achieved from the starting value $a_{0}=-1$.
3. Find all fixed points for the recursion

$$
x_{t+1}=x_{t} e^{1-x_{t}}
$$

and determine whether each is asymptotically stable or unstable.
4. The discrete logistic population model is

$$
N_{t+1}=N_{t}+R N_{t}\left(1-\frac{N_{t}}{K}\right) .
$$

Take $R=1$ and $K=10$ and show that one drawback of this model is that it can start with a positive population $N_{0}>0$ and return a negative population N_{1}.
5. Use a geometric argument to evaluate the integral

$$
\int_{-1}^{1}|x| d x
$$

6. Use the method of Riemann sums to evaluate

$$
\int_{1}^{4} 1-x^{2} d x
$$

7. Express the integral

$$
\int_{0}^{2} \sqrt{1+\sin x} d x
$$

as the limit of a Riemann sum. Be sure to define all quantities that appear in your expression.
8. Determine whether or not the Fundamental Theorem of Calculus can be applied to the function

$$
f(x)= \begin{cases}x & 0 \leq x \leq 1 \\ 2-x & 1<x \leq 2\end{cases}
$$

on the interval $[0,2]$. If so, find the anti-derivative $F(x)$ and use it to compute

$$
\int_{0}^{2} f(x) d x
$$

9. Compute

$$
\frac{d}{d x} \int_{\cos x}^{x^{2}+1} e^{-x^{2}} d x
$$

10. Evaluate the following indefinite integrals.

10a.

$$
\int \cos (2 x-1) d x
$$

10b.

$$
\int \frac{x}{x^{2}+1} d x
$$

11. Evaluate the following definite integrals.

11a.

$$
\int_{0}^{\sqrt{\pi}} x \sin \left(x^{2}\right) d x
$$

11b.

$$
\int_{1}^{e} \frac{\sqrt{\ln x}}{x} d x
$$

12. Evaluate the following indefinite integral

$$
\int \frac{\sin ^{3} x \cos x}{\sqrt{1+\sin ^{2} x}} d x
$$

13. Find the total area between the curves $y=x^{2}$ and $y=2-x$ for $x \in[0,2]$.
14. Suppose that for each value x a certain solid has cross-sectional area $A(x)$ and density $\rho(x)$. (The density of an object is its mass per unit volume, $\rho=\frac{m}{V}$.) Find a formula for the total mass of such an object on the interval $[a, b]$.
15. Find the volume of the solid obtained by rotating about the x-axis the area between the graph of $f(x)=\sqrt{x}$ and the x-axis for $x \in[0,1]$.
16. Find the volume obtained by rotating the region between $y=2$ and $y=\sqrt{x}$ for $x \in[0,4]$ about the x-axis.
17. Find the volume obtained by rotating the region bounded by the curves $y^{2}=x$ and $y=\frac{x}{2}$ about the y-axis.
18. Suppose the base of a certain solid is the region in the $x y$-plane bounded by $y=4$ and $y=x^{2}$. Find the volume of the solid created if every cross section is a square perpendicular to the x-axis.
19. Compute the average value of the function

$$
f(x)=x+\frac{1}{x}
$$

for $x \in[1,3]$.
20. Determine the length of the graph of $f(x)=x^{\frac{3}{2}}+1$ for $x \in[0,4]$.

Solutions.

1. First, we get the sign right with $(-1)^{n+1}, n=1,2, \ldots$, and we observe that the numerator is $2 n+1$, for $n=1,2, \ldots$ The easiest way to understand the denominator is to factor out the common factor 2 (a useful trick in general). We find

$$
a_{n}=(-1)^{n+1} \frac{2 n+1}{2 n^{2}}, \quad n=1,2, \ldots
$$

2. First, the fixed point equation is

$$
a=\frac{1}{2} a\left(\frac{1}{2}-a\right)=\frac{1}{4} a-\frac{1}{2} a^{2},
$$

so that the fixed points are

$$
\frac{3}{4} a+\frac{1}{2} a^{2}=a\left(\frac{3}{4}+\frac{1}{2} a\right)=0 \Rightarrow a=0,-\frac{3}{2} .
$$

For the cobwebbing, we can plot $f(a)=\frac{1}{4} a-\frac{1}{2} a^{2}=a\left(\frac{1}{4}-\frac{1}{2} a\right)$ by noticing that it's a parabola opening downward with x-intercepts at $a=0$ and $a=\frac{1}{2}$, and therefore has a maximum value at (the midpoint) $\frac{1}{4}$ of $\frac{1}{4}\left(\frac{1}{4}-\frac{1}{2} \frac{1}{4}\right)=\frac{1}{4} \frac{1}{8}=\frac{1}{32}$. We find that for $a_{0}=-1$ (see the figure)

$$
\lim _{n \rightarrow \infty} a_{n}=0
$$

3. First, in order to find the fixed points we solve

$$
x=x e^{1-x} \Rightarrow x\left(1-e^{1-x}\right)=0
$$

from which we have the fixed points

$$
x=0,1 .
$$

In order to evaluate the stability of these points, we set

$$
f(x)=x e^{1-x}
$$

and compute

$$
f^{\prime}(x)=e^{1-x}+x e^{1-x}(-1)=e^{1-x}(1-x) .
$$

We have:

$$
\begin{aligned}
& f^{\prime}(0)=e \Rightarrow\left|f^{\prime}(0)\right|>1 \Rightarrow x=0 \text { is unstable } \\
& f^{\prime}(1)=0 \Rightarrow\left|f^{\prime}(0)\right|<1 \Rightarrow x=1 \text { is asymptotically stable }
\end{aligned}
$$

4. First, for $R=1$ and $K=10$ the model becomes

$$
N_{t+1}=N_{t}+N_{t}\left(1-\frac{N_{t}}{10}\right)
$$

We see that if N_{t} is large the second term will be negative, and as a convenient value we can take $N_{0}=50$. We find

$$
N_{1}=50+50(1-5)=50-200=-150
$$

5. The graph of the function $f(x)=|x|$ looks like a V on $[-1,1]$, and the area under the curve consists of two triangles with equal areas. Each triangle has baselength 1 and height 1 , and so the area of each is $\frac{1}{2}$. We conclude

$$
\int_{-1}^{1}|x| d x=1
$$

6. In this case $\Delta x=\frac{b-a}{n}=\frac{4-1}{n}=\frac{3}{n}$, and we use right endpoints $x_{k}=1+k \Delta x$. We have

$$
\begin{aligned}
A_{n} & =\sum_{k=1}^{n}\left[1-\left(1+\frac{3 k}{n}\right)^{2}\right] \frac{3}{n}=\sum_{k=1}^{n}\left[1-\left(1+6 \frac{k}{n}+9 \frac{k^{2}}{n^{2}}\right)\right] \frac{3}{n} \\
& =\sum_{k=1}^{n}-\frac{18 k}{n^{2}}-\frac{27 k^{2}}{n^{3}}=-\frac{18}{n^{2}} \sum_{k=1}^{n} k-\frac{27}{n^{3}} \sum_{k=1}^{n} k^{2} \\
& =-\frac{18}{n^{2}} \frac{n(n+1)}{2}-\frac{27}{n^{3}} \frac{n(n+1)(2 n+1)}{6} .
\end{aligned}
$$

We conclude

$$
\lim _{n \rightarrow \infty} A_{n}=-9-9=-18
$$

7. The Riemann sum is

$$
\int_{0}^{2} \sqrt{1+\sin x} d x=\lim _{\|P\| \rightarrow 0} \sum_{k=1}^{n} \sqrt{1+\sin c_{k}} \triangle x_{k}
$$

where P is a partition of the interval $[0,2]$ with points $P=\left[x_{0}, x_{1}, \ldots, x_{n}\right],\|P\|$ is the norm of $P\left(\|P\|=\max _{k} \Delta x_{k}\right), \Delta x_{k}=x_{k}-x_{k-1}$, and $c_{k} \in\left[x_{k-1}, x_{k}\right]$ for each $k=1, \ldots, n$.
8. This function is continuous on the interval $[0,2]$ and so FTC applies. In order to compute the anti-derivative, we first observe that for $x \in[0,1]$ we have

$$
F(x)=\int_{0}^{x} y d y=\frac{x^{2}}{2}
$$

as expected. For $x \in[1,2]$ we must keep in mind that we have

$$
F(x)=\int_{0}^{x} f(y) d y=\int_{0}^{1} y d y+\int_{1}^{x} 2-y d y=\frac{1}{2}+\left(2 x-\frac{x^{2}}{2}\right)-\frac{3}{2}=\left(2 x-\frac{x^{2}}{2}\right)-1 .
$$

That is,

$$
F(x)=\left\{\begin{array}{ll}
\frac{x^{2}}{2} & 0 \leq x \leq 1 \\
\left(2 x-\frac{x^{2}}{2}\right)-1 & 1<x \leq 2
\end{array} .\right.
$$

Applying FTC, we conclude

$$
\int_{0}^{2} f(x) d x=F(2)-F(0)=1
$$

(This can easily be verified by a geometric argument.)
9. According to Leibniz' rule, we have

$$
\frac{d}{d x} \int_{\cos x}^{x^{2}+1} e^{-x^{2}} d x=e^{-\left(x^{2}+1\right)^{2}} 2 x-e^{-\cos ^{2} x}(-\sin x)
$$

10a. Use the substitution $u=2 x-1$, so that $\frac{d u}{d x}=2$. The integral becomes

$$
\frac{1}{2} \int \cos u d u=\frac{1}{2} \sin u+C=\frac{1}{2} \sin (2 x-1)+C
$$

10b. Use the substitution $u=x^{2}+1$, so that $\frac{d u}{d x}=2 x$. The integral becomes

$$
\int \frac{x}{u} \frac{d u}{2 x}=\frac{1}{2} \int \frac{d u}{u}=\frac{1}{2} \ln |u|+C=\frac{1}{2} \ln \left|x^{2}+1\right|+C,
$$

where since $x^{2}+1$ is always positive the absolute value can be dropped.
11a. Use the substitution $u=x^{2}$, so that $\frac{d u}{d x}=2 x$. The integral becomes

$$
\int_{0}^{\pi} x \sin (u) \frac{d u}{2 x}=\frac{1}{2} \int_{0}^{\pi} \sin u d u=-\left.\frac{1}{2} \cos u\right|_{0} ^{\pi}=1
$$

11b. Use the substitution $u=\ln x$, so that $\frac{d u}{d x}=\frac{1}{x}$. The integral becomes

$$
\int_{1}^{e} \frac{\sqrt{u}}{x} x d u=\int_{0}^{1} u^{\frac{1}{2}} d u=\left.\frac{u^{\frac{3}{2}}}{\frac{3}{2}}\right|_{0} ^{1}=\frac{2}{3} .
$$

(Alternatively, Problems 10 and 11 can be solved with fast substitution.)
12. We make the substitution $u=1+\sin ^{2} x$, with $d u=2 \sin x \cos x d x$, and we find

$$
\int \frac{\sin ^{3} x \cos x}{\sqrt{u}} \frac{d u}{2 \sin x \cos x}=\frac{1}{2} \int \frac{\sin ^{2} x}{\sqrt{u}} d u
$$

At this point we observe that $\sin ^{2} x=u-1$, so we have $\frac{1}{2} \int \frac{u-1}{\sqrt{u}} d u=\frac{1}{2} \int u^{1 / 2}-u^{-1 / 2} d u=\frac{1}{2}\left[\frac{u^{3 / 2}}{3 / 2}-\frac{u^{1 / 2}}{1 / 2}\right]=\frac{1}{3}\left(1+\sin ^{2} x\right)^{3 / 2}-\left(1+\sin ^{2} x\right)^{1 / 2}+C$.
13. Plotting these two curves together, we can see that they intersect at $x=1$, and that for $x<1, y=2-x$ is larger, while for $x>1, y=x^{2}$ is larger. The area between the curves is

$$
\begin{aligned}
A & =\int_{0}^{1}(2-x)-x^{2} d x+\int_{1}^{2} x^{2}-(2-x) d x \\
& =\left.\left(2 x-\frac{x^{2}}{2}-\frac{x^{3}}{3}\right)\right|_{0} ^{1}+\left.\left(\frac{x^{3}}{3}-2 x+\frac{x^{2}}{2}\right)\right|_{1} ^{2} \\
& =3
\end{aligned}
$$

14. As when developing our formula for the volume of such an object, we consider a partition of the interval $[a, b], P=\left[x_{0}, x_{1}, \ldots, x_{n}\right]$. On the general subinterval $\left[x_{k-1}, x_{k}\right]$ we approximately have a cylinder with base area $A\left(c_{k}\right)$ and constant density $\rho\left(c_{k}\right)$, where c_{k} is any value $c_{k} \in\left[x_{k-1}, x_{k}\right]$. The mass of such a cylinder is $\rho\left(c_{k}\right) V=\rho\left(c_{k}\right) A\left(c_{k}\right) \Delta x_{k}$, and so if we sum up these masses we have

$$
M_{n}=\sum_{k=1}^{n} \rho\left(c_{k}\right) A\left(c_{k}\right) \Delta x_{k}
$$

Taking now a limit as the partition size goes to 0 , we find

$$
M=\lim _{\|P\| \rightarrow 0} \sum_{k=1}^{n} \rho\left(c_{k}\right) A\left(c_{k}\right) \Delta x_{k}=\int_{a}^{b} \rho(x) A(x) d x .
$$

15. Since the object is being created by rotation, the cross section at each point x is a circle with radius $f(x)$. The area of the cross section at point x is $A(x)=\pi f(x)^{2}=\pi x$. Recalling that our volume formula is

$$
V=\int_{a}^{b} A(x) d x
$$

we compute

$$
V=\int_{0}^{1} \pi x d x=\left.\pi \frac{1}{2} x^{2}\right|_{0} ^{1}=\frac{\pi}{2}
$$

16. In this case, we use the method of washers, for which we have

$$
\begin{aligned}
V & =\pi \int_{0}^{4} f(x)^{2}-g(x)^{2} d x \\
& =\pi \int_{0}^{4} 2^{2}-(\sqrt{x})^{2} d x=\pi\left[4 x-\frac{x^{2}}{2}\right]_{0}^{4} \\
& =8 \pi
\end{aligned}
$$

17. First, we find the points at which these curves intersect by solving

$$
\left(\frac{x}{2}\right)^{2}=x \Rightarrow \frac{x^{2}}{4}-x=0 \Rightarrow x\left(\frac{x}{4}-1\right)=0 \Rightarrow x=0,4
$$

The points of intersection are $(0,0)$ and $(4,2)$. If we rotate the region between these curves about the y-axis the line $x=2 y$ describes the outer radius while the parabola $x=y^{2}$ describes the inner radius. The volume is

$$
V=\pi \int_{0}^{2}(2 y)^{2}-\left(y^{2}\right)^{2} d y=\pi \int_{0}^{2} 4 y^{2}-y^{4} d y=\pi\left[\frac{4}{3} y^{3}-\frac{1}{5} y^{5}\right]_{0}^{2}=\pi\left[\frac{32}{3}-\frac{32}{5}\right]=\frac{64 \pi}{15}
$$

18. One side of each square runs from the curve $y=x^{2}$ to the line $y=4$, and so the sidelength is $4-x^{2}$. The cross-sectional area is consequently

$$
A(x)=\left(4-x^{2}\right)^{2},
$$

and the volume is (by symmetry)

$$
V=2 \int_{0}^{2}\left(4-x^{2}\right)^{2} d x=2 \int_{0}^{2} 16-8 x^{2}+x^{4} d x=\left.2\left(16 x-\frac{8}{3} x^{3}+\frac{x^{5}}{5}\right)\right|_{0} ^{2}=\frac{512}{15}
$$

19. We compute

$$
f_{\mathrm{avg}}=\frac{1}{2} \int_{1}^{3} x+x^{-1} d x=\left.\frac{1}{2}\left[\frac{1}{2} x^{2}+\ln |x|\right]\right|_{1} ^{3}=\frac{1}{2}\left[\frac{9}{2}+\ln 3\right]-\frac{1}{2}\left[\frac{1}{2}\right]=2+\ln \sqrt{3} .
$$

20. First, observe that

$$
f^{\prime}(x)=\frac{3}{2} x^{\frac{1}{2}}
$$

The formula for arclength is

$$
L=\int_{a}^{b} \sqrt{1+f^{\prime}(x)^{2}} d x
$$

so we have

$$
L=\int_{0}^{4} \sqrt{1+\frac{9}{4}} x d x
$$

We carry out this integral with substitution, setting $u=1+\frac{9}{4} x$ so that $\frac{d u}{d x}=\frac{9}{4}$. The integral becomes

$$
L=\int_{1}^{10} u^{\frac{1}{2}} \frac{4}{9} d u=\left.\frac{4}{9} \frac{u^{\frac{3}{2}}}{\frac{3}{2}}\right|_{1} ^{10}=\frac{8}{27}\left(10^{\frac{3}{2}}-1\right)
$$

