M611 Fall 2019 Assignment 1, due Friday Sept. 6

1. [10 pts] Answer the following:
a. Show that for any positive integers $j \leq k$

$$
\binom{k}{j-1}+\binom{k}{j}=\binom{k+1}{j}
$$

b. Prove the Binomial Theorem

$$
(a+b)^{k}=\sum_{j=0}^{k}\binom{k}{j} a^{j} b^{k-j}
$$

for $k=1,2, \ldots$.
c. Does your proof work if a and b are square matrices that commute?
2. [10 pts] Prove the following theorem: If P and Q are commuting $n \times n$ matrices, then

$$
e^{P} e^{Q}=e^{P+Q}
$$

Explain in your proof where the assumption that P and Q commute is used.
Note. You can use Theorem 3.51 from Rudin, stated here for matrices: If the series of $n \times n$ matrices $\sum_{k=0}^{\infty} A_{k}, \sum_{k=0}^{\infty} B_{k}$, and $\sum_{k=0}^{\infty} C_{k}$ converge respectively to the matrices \mathbb{A}, \mathbb{B}, and \mathbb{C}, and $C_{k}=\sum_{j=0}^{k} A_{j} B_{k-j}$, then $\mathbb{C}=\mathbb{A} \mathbb{B}$.
3. [10 pts] Solve the ODE system

$$
\begin{aligned}
& y_{1}^{\prime}=y_{1}+4 y_{2} ; \quad y_{1}(0)=0 \\
& y_{2}^{\prime}=5 y_{1}+2 y_{2} ; \quad y_{2}(0)=1 .
\end{aligned}
$$

4. [10 pts] Solve the ODE system

$$
\begin{array}{ll}
y_{1}^{\prime}=y_{1}-2 y_{2} ; & y_{1}(0)=0 \\
y_{2}^{\prime}=3 y_{1}+y_{2} ; & y_{2}(0)=1
\end{array}
$$

Express your solution without any complex values.

