M611 Fall 2014 Assignment 11, due Friday Dec. 5

1. [10 pts] (Evans 2.5.19.)
a. Show the general solution of the PDE $u_{x y}=0$ is

$$
u(x, y)=F(x)+G(y)
$$

for arbitrary functions F, G.
b. Using the change of variables $\xi=x+t, \eta=x-t$, show $u_{t t}-u_{x x}=0$ if and only if $u_{\xi \eta}=0$.
c. Use (a) and (b) to rederive d'Alembert's formula.
d. Under what conditions on the initial data g, h is the solution u a right-moving wave? A left-moving wave?
2. [10 pts] Solve the following:
a. Solve the quarter-plane problem

$$
\begin{aligned}
u_{t t} & =c^{2} u_{x x} ; \quad(x, t) \in(0, \infty) \times(0, \infty) \\
u_{x}(0, t) & =0 ; \quad t \geq 0 \\
u(x, 0) & =g(x) ; \quad x \geq 0 \\
u_{t}(x, 0) & =h(x) ; \quad x \geq 0 .
\end{aligned}
$$

Notice that the difference between this problem and the quarter-plane problem we solved in class is the condition $u_{x}(0, t)=0$ (replacing $u(0, t)=0$).
b. Solve the equation from Part (a) with $c=2, h(x)=0$, and

$$
g(x)= \begin{cases}x-2 & 2 \leq x \leq 3 \\ 4-x & 3<x \leq 4 \\ 0 & \text { otherwise }\end{cases}
$$

Sketch graphs of $u(x, 0), u(x, 1)$, and $u(x, 2)$.
c. Solve the equation from Part (a) with $c=2, g(x)=0$ and

$$
h(x)=\frac{1}{x^{2}+1} .
$$

Sketch a graph of $u(x, 1)$.
Note. For Part (a) you can proceed similarly as in Problem 1, beginning with

$$
u(x, t)=F(x-c t)+G(x+c t) .
$$

3. [10 pts] (Evans 2.5.21.)
a. Assume $\vec{E}=\left(E^{1}, E^{2}, E^{3}\right)$ and $\vec{B}=\left(B^{1}, B^{2}, B^{3}\right)$ solve Maxwell's equations

$$
\begin{aligned}
\vec{E}_{t} & =\nabla \times \vec{B} \\
\vec{B}_{t} & =-\nabla \times \vec{E} \\
\nabla \cdot \vec{E} & =0 \\
\nabla \cdot \vec{B} & =0 .
\end{aligned}
$$

Show

$$
\vec{E}_{t t}-\Delta \vec{E}=0, \quad \vec{B}_{t t}-\Delta \vec{B}=0
$$

b. Assume that $\vec{u}=\left(u^{1}, u^{2}, u^{3}\right)$ solves the evolution equations of linear elasticity

$$
\vec{u}_{t t}-\mu \Delta \vec{u}-(\lambda+\mu) D(\operatorname{div} \vec{u})=0 \quad \text { in } \mathbb{R}^{3} \times(0, \infty) .
$$

Show $w:=\operatorname{div} \vec{u}$ and $\vec{w}:=$ curl \vec{u} each solve wave equations, but with different speeds of propagation.
4. [10 pts] As in the statement of Lemma 2.4.1 assume $u \in C^{m}\left(\mathbb{R}^{n} \times[0, \infty)\right), m, n \geq 2$, and

$$
U(r, t ; \vec{x})=f_{\partial B(\vec{x}, r)} u(\vec{y}, t) d S_{y}
$$

(In fact, this problem only requires $m=2$.) Verify the following relations, claimed in the proof of Lemma 2.4.1:

$$
\begin{aligned}
U_{r}(r, t ; \vec{x}) & =\frac{r}{n} f_{B(\vec{x}, r)} \Delta_{y} u(\vec{y}, t) d \vec{y} \\
U_{r r}(r, t ; \vec{x}) & =\frac{1-n}{n} f_{B(\vec{x}, r)} \Delta_{y} u(\vec{y}, t) d \vec{y}+f_{\partial B(\vec{x}, r)} \Delta_{y} u(\vec{y}, t) d S_{y}
\end{aligned}
$$

