M611 Fall 2019 Assignment 2, due Friday Sept. 13

1. [10 pts] Solve the ODE system

$$
\begin{aligned}
& \frac{d y_{1}}{d t}=y_{2} ; \quad y_{1}(0)=1 \\
& \frac{d y_{2}}{d t}=4 y_{1}+3 y_{2}-4 y_{3} ; \quad y_{2}(0)=0 \\
& \frac{d y_{3}}{d t}=y_{1}+2 y_{2}-y_{3} ; \quad y_{3}(0)=0
\end{aligned}
$$

2. [10 pts] (Jordan Canonical Form) Although some matrices cannot be diagonalized, all matrices can be put into Jordan Canonical form. If a matrix $A \in \mathbb{C}^{n \times n}$ has k distinct eigenvalues $\left\{\lambda_{i}\right\}_{i=1}^{k}$ with respective geometric multiplicies $\left\{m_{i}\right\}_{i=1}^{k}$, then the Jordan canonical form of A is

$$
J=\left(\begin{array}{ccc}
J_{1} & 0 & 0 \\
0 & \ddots & 0 \\
0 & 0 & J_{m}
\end{array}\right)
$$

where

$$
m=\sum_{i=1}^{k} m_{i}
$$

and each submatrix J_{j} has the form

$$
J_{j}=\left(\begin{array}{cccc}
\lambda_{j} & 1 & 0 & 0 \\
0 & \lambda_{j} & 1 & 0 \\
0 & 0 & \ddots & 1 \\
0 & 0 & 0 & \lambda_{j}
\end{array}\right), \quad j=1,2, \ldots, m
$$

I.e., the number of times that λ_{i} appears in J is its algebraic multiplcity, while the number of Jordan blocks associated with λ_{i} is its geometric multiplicity. In this problem, we will see how to put a matrix into Jordan form, and how to use this form to solve the linear constant coefficient ODE specified by that matrix.
First, for an ODE

$$
\frac{d \vec{y}}{d t}=A \vec{y}
$$

we can make the change of variables $\vec{y}=P \vec{x}$, which leads to the new equation

$$
\frac{d \vec{x}}{d t}=P^{-1} A P \vec{x}
$$

We would like to construct P in such a way that $P^{-1} A P$ is in Jordan canonical form. We can do this as follows: let its first n_{1} columns comprise the generalized eigenvectors associated with λ_{1}, its next n_{2} columns the generalized eigenvectors associated with λ_{2} etc. Moreover, order these eigenvectors as follows: Let \vec{v}_{1} satisfy

$$
\left(A-\lambda_{1} I\right) \vec{v}_{1}=0,
$$

and then let \vec{v}_{k} satisfy

$$
\left(A-\lambda_{1} I\right) \vec{v}_{k}=\vec{v}_{k-1},
$$

continuing in this way until no such \vec{v}_{k} exists. (The result is a Jordan chain, and the existing $\left\{\vec{v}_{k}\right\}_{k=1}^{p_{1}}$ will serve as the first p_{1} columns of P. Also the first Jordan block of J will be of size $p_{1} \times p_{1}$.) If λ_{1} has geometric multiplicity greater than 1 , take a second regular eigenvector and repeat the procedure above to get p_{2} generalized eigenvectors. Continue in this way until the linearly independent regular eigenvectors associated with λ_{1} have all been used, and then go to λ_{2}. Do exactly the same thing with λ_{2}, and continue until you run out of eigenvalues. With the resulting matrix P, the Jordan form of A is easily computed as

$$
J=P^{-1} A P
$$

Here's the actual problem. Construct the Jordan form for

$$
A=\left(\begin{array}{ccc}
3 & -1 & 1 \\
2 & 0 & 1 \\
1 & -1 & 2
\end{array}\right)
$$

and use your result to solve the ODE

$$
\frac{d \vec{y}}{d t}=A \vec{y} ; \quad \vec{y}_{0}=\left(\begin{array}{l}
3 \\
2 \\
3
\end{array}\right) .
$$

3. [10 pts] Define a map on square matrices by setting

$$
\rho(A, B):=\operatorname{rank}(A-B)
$$

for any square matrices $A, B \in \mathbb{C}^{n \times n}$. Show that ρ defines a metric.
4. [10 pts] Show that the sequence of functions $\left\{f_{k}\right\}_{k=1}^{\infty} \subset C([-1,1])$ defined by

$$
f_{k}(x)= \begin{cases}0 & -1 \leq x \leq 0 \\ k x & 0 \leq x \leq \frac{1}{k} \\ 1 & \frac{1}{k}<x \leq 1\end{cases}
$$

is Cauchy in the metric

$$
\rho(f, g)=\int_{-1}^{1}|f(x)-g(x)| d x
$$

but that it does not converge to a function in $C([-1,1])$. (I.e., we are showing that the metric space $(C([-1,1]), \rho)$ is not complete.)

