M611 Fall 2019 Assignment 6, due Friday Oct. 11

1. [10 pts] (Evans 2.5.1.) Write down an explict formula for a function u solving the initial-value problem

$$
\begin{aligned}
u_{t}+\vec{b} \cdot D u+c u & =0 & & \text { in } \mathbb{R}^{n} \times(0, \infty) \\
u & =g & & \text { on } \mathbb{R}^{n} \times\{t=0\} .
\end{aligned}
$$

Here $c \in \mathbb{R}$ and $\vec{b} \in \mathbb{R}^{n}$ are constants.
2. [10 pts] (Evans 2.5.2.) Prove that Laplace's equation $\Delta u=0$ is rotation invariant; that is, if O is an orthogonal $n \times n$ matrix and we define

$$
v(\vec{x}):=u(O \vec{x}), \quad \vec{x} \in \mathbb{R}^{n},
$$

then $\Delta v=0$.
Notes. Recall that we say O is orthogonal if $O^{T} O=I$ (i.e., $O^{-1}=O^{T}$). Also, as motivation for the definition, recall that in \mathbb{R}^{2} if the coordinates for a point P are $\left(x_{1}, x_{2}\right)$ in one coordinate system and $\left(y_{1}, y_{2}\right)$ in a coordinate system rotated counterclockwise by angle θ then

$$
\vec{y}=O \vec{x},
$$

where O is the rotation matrix

$$
O=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)
$$

which is clearly orthogonal.
3. $[10 \mathrm{pts}]$ Recall from our discussion of physicality that the gravitational (force) field $\overrightarrow{\mathcal{F}}$ corresponding with mass distributed in space with density $\rho(\vec{x})$ is

$$
\overrightarrow{\mathcal{F}}=-D u
$$

where the potential u solves Poisson's equation

$$
-\Delta u=-4 \pi G \rho(\vec{x}),
$$

where G is Newton's gravitational constant. Use this formulation to derive an expression for the gravitational field $\overrightarrow{\mathcal{F}}$ associated with mass uniformly distributed over a ball $B(0, R) \subset \mathbb{R}^{3}$ with constant density ρ. Be sure to consider points both inside and outside $B(0, R)$.
Note. I suggest placing \vec{x} on the vertical axis (without loss of generality) and using the law of cosines with the angle of inclination ϕ. Recall that if θ denotes your azimuthal angle, then the surface increment for a sphere is $d S=r^{2} \sin \phi d \phi d \theta$.
4. [10 pts] Suppose $U \subset \mathbb{R}^{n}$ is open and $f \in C^{1}(U \times[0, \infty), \mathbb{R})$. For $B\left(\vec{x}_{0}, r\right) \subset U$, set

$$
F(r)=\int_{B\left(\vec{x}_{0}, r\right)} f(\vec{x}, r) d \vec{x} .
$$

Show that

$$
F^{\prime}(r)=\int_{B\left(\vec{x}_{0}, r\right)} f_{r}(\vec{x}, r) d \vec{x}+\int_{\partial B\left(\vec{x}_{0}, r\right)} f(\vec{x}, r) d S_{x}
$$

