## M612 Spring 2020 Assignment 2, due Fri. Jan. 31

1. [10 pts] In this problem, we collect two straightforward relations needed for lecture.
a. Show that if $0<\gamma \leq 1$ and $\vec{x}, \vec{y} \in \mathbb{R}^{n}$ then

$$
\left||\vec{x}|^{\gamma}-|\vec{y}|^{\gamma}\right| \leq|\vec{x}-\vec{y}|^{\gamma} .
$$

b. Show that if $\sigma, \beta$, and $\gamma$ are multiindices with $\gamma \leq \sigma \leq \beta$ and $|\gamma|=1$ then

$$
\binom{\beta}{\sigma-\gamma}+\binom{\beta}{\sigma}=\binom{\beta+\gamma}{\sigma} .
$$

2. [10 pts] The different function spaces that arise in the analysis of PDEs can be regarded as categories of regularity (i.e., smoothness). For example, if $U \subset \mathbb{R}^{n}$ denotes an open set, we can think of $C(\bar{U})$ as a sort of baseline case with minimal regularity. The spaces $C^{k}(\bar{U})$, $k=1,2, \ldots$ clearly have regularity that increases with increasing $k$. To be precise, we make the following definition: Suppose $X$ denotes a space of functions defined on $U=B(0,1)$. We define the regularity of $X$ as

$$
\operatorname{Reg}(X):=\inf _{\delta \in \mathbb{R} \backslash \mathbb{Z}}\left\{\delta:|\vec{x}|^{\delta} \in X\right\}
$$

(In particular, notice that negative regularity is possible.) Compute the regularity of each of the following spaces:
(i) $C(\bar{U})$.
(ii) $C^{k}(\bar{U}), k=1,2,3, \ldots$
(iii) $L^{p}(U), 1 \leq p \leq \infty$.
(vi) $C^{0, \gamma}(\bar{U}), 0<\gamma \leq 1$.

Note. Rademacher's Theorem (Theorem 5.8.6 in Evans) asserts that if $u$ is Lipschitz continuous in $U$ then $u$ is differentiable a.e. in $U$. Does this make sense according to regularity?
3. [10 pts] (Evans 5.10.1.) Suppose $k \in\{0,1,2, \ldots\}$ and $0<\gamma \leq 1$. Prove that $C^{k, \gamma}(\bar{U})$ is a Banach space.
4. [10 pts] For $0<\beta<\gamma \leq 1$ prove the interpolation inequality

$$
\|u\|_{C^{0, \gamma}(\bar{U})} \leq\|u\|_{C^{0, \beta}(\bar{U})}^{\frac{1-\gamma}{1-\beta}} \cdot\|u\|_{C^{0,1}(\bar{U})}^{\frac{\gamma-\beta}{1-\beta}} .
$$

Note. Observe the corresponding regularity relation,

$$
\operatorname{Reg}\left(C^{0, \gamma}\right)=\frac{1-\gamma}{1-\beta} \operatorname{Reg}\left(C^{0, \beta}\right)+\frac{\gamma-\beta}{1-\beta} \operatorname{Reg}\left(C^{0,1}\right)
$$

