## M612 Spring 2020 Assignment 4, due Fri., Feb. 14

1. [10 pts] Suppose $U \subset \mathbb{R}^{n}$ is open and $u, v \in H_{0}^{1}(U)\left(=W_{0}^{1,2}(U)\right)$. Prove that we can integrate by parts:

$$
\int_{U} u v_{x_{i}} d \vec{x}=-\int_{U} u_{x_{i}} v d \vec{x}
$$

2. [10 pts] (Evans 5.10.4.) Assume $n=1$ and $u \in W^{1, p}(0,1)$ for some $1 \leq p<\infty$.
(a) Show that $u$ is equal a.e. to an absolutely continuous function, and $u^{\prime}$ (which exists a.e.) belongs to $L^{p}(0,1)$.
(b) Prove that if $1<p<\infty$, then

$$
|u(x)-u(y)| \leq|x-y|^{1-\frac{1}{p}}\left(\int_{0}^{1}\left|u^{\prime}\right|^{p} d t\right)^{1 / p}
$$

for a.e. $x, y \in[0,1]$.
Note. We say $u$ is absolutely continuous on $[0,1]$, often denoted $u \in A C[0,1]$, provided that for every $\epsilon>0$ there exists $\delta>0$ so that for any finite collection of interval subsets of $[0,1]$, $\left\{\left[a_{j}, b_{j}\right]\right\}_{j=1}^{N}$, mutually disjoint, except possibly at the endpoints, satisfying $\sum_{j=1}^{N}\left(b_{j}-a_{j}\right) \leq \delta$ we have $\sum_{j=1}^{N}\left|u\left(b_{j}\right)-u\left(a_{j}\right)\right| \leq \epsilon$.
3. [10 pts] Show that if $u \in H^{1}(\mathbb{R})$, and $u^{\prime}$ denotes the weak derivative of $u$, then

$$
u^{\prime}(x)=\lim _{h \rightarrow 0} \frac{u(x+h)-u(x)}{h}
$$

where the limit is in the $L^{2}(\mathbb{R})$ sense.
4. [10 pts] Fill in a step in the proof of Theorem 5.3 .3 by verifying that (in the notation of that proof)

$$
\left\|D^{\alpha} v^{\epsilon}-D^{\alpha} u_{\epsilon}\right\|_{L^{p}(V)} \rightarrow 0
$$

as $\epsilon \rightarrow 0$.
Note. The key, of course, is to deal with the appearance of $\epsilon$ both in the mollifier and in the function being mollifed. Keep in mind that we cannot specify

$$
u^{\epsilon}(\vec{x})=\eta_{\epsilon} * u(\vec{x})
$$

for $\vec{x} \in V$ because for any $\epsilon>0$ there would be $\vec{x} \in V$ so that $B(\vec{x}, \epsilon)$ is not in $U$, where $u$ is defined. One approach is to note that $v^{\epsilon}$ and $u_{\epsilon}$ are both defined on some $W_{\epsilon}$ so that $V \subset \subset W_{\epsilon}$ and proceed as in the proof of Theorem A.C.7, starting with Step 4.

