M612 Spring 2020 Assignment 5, due Fri., Feb. 21

1. [10 pts] Let $I \subset \mathbb{R}$ denote some open interval containing 0. Show that Tf = f(0) is not a bounded linear functional on the space of continuous functions measured with the $L^2(I)$ norm, but is a bounded linear functional if measured using the uniform norm. In the latter case, the Hahn-Banach Theorem allows you to extend T to a bounded linear functional on $L^{\infty}(I)$. What does this say about $L^{\infty}(I)^*$?

2. [10 pts] We saw in class that if $u^* \in L^p(U)^*$ for some $1 \leq p < \infty$, then there exists $v \in L^q(U)$ so that

$$\langle u^*, u \rangle = \int_U uv d\vec{x}$$

for all $u \in L^p(U)$, and moreover that the map $u^* \mapsto v$ is an isometric isomorphism, so that $L^p(U)^* \stackrel{\text{i.i.}}{=} L^q(U)$. Show that in this setting (i.e., with $X = L^p(U)$), and with the additional assumption that p > 1, the canonical injection J (as defined in class) is surjective.

- 3. [10 pts] Let X, Y, and Z denote Banach spaces.
- a. Show that the sum of two compact operators $A: X \to Y$ and $B: X \to Y$ is compact.
- b. Show that if $A: X \to Y$ and $B: Y \to Z$ then:
- (i) If A is bounded and B is compact then BA is compact.
- (ii) If A is compact and B is bounded then BA is compact.
- 4. [10 pts] Let H denote a real Hilbert space with inner product (\cdot, \cdot) .
- a. Show that if $u_k \rightharpoonup u$ in H then u is uniquely determined.
- b. Show that if a linear operator $K: H \to H$ is compact and $u_k \rightharpoonup u$ then $Ku_k \to Ku$.