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The Lax-Milgram Theorem

Let H denote a real Hilbert space with inner product (-, -) and norm
| -1l = (-,)2. We'll continue to use (-,-) to denote the action of
an element of H* on an element of H.

Theorem 6.2.1. (Lax-Milgram Theorem) Suppose B: H x H —+ R
is a bilinear form for which there exist constants o, 3 > 0 so that

|Blu, v]| <a|lull||lv], Vu,veH (boundedness)
Blu,u] > B|lul|®>, Yue€ H (coercivity).

Then for each f € H*, there exists a unique u € H so that
Blu,v] = (f,v)

for all v € H.



The Lax-Milgram Theorem

Notes. 1. If B is symmetric (i.e., Bu, v] = B|v, u] for all
u,v € H), then Blu,v] is an inner product on H, and this is just
the Riesz Representation Theorem.

2. A similar statement is true for a complex Hilbert space H,
assuming B is sesquilinear. There are also many extensions.

3. Before proving the theorem, we'll work through a simple
application.



Application to Poisson’s Equation

For U C R" open and bounded, consider Poisson's equation,
—Au=feHYU), inU
u=0, ondU.
The weak formulation for this problem is
/ D GjjugvgdX = (f,v), Vv e H(U).
Ujj=1
If we define the bilinear form
Blu,v] = / Z Gjjlx; Vo dX = / Du - Dvdx,

Ui U

then we can express this weak formulation as

Blu,v] = (f,v), Yve HiU).



Application to Poisson’s Equation

We see that our Hilbert space for the Lax-Milgram Theorem is
H(U), and in order to apply the theorem, we only need to check
that B[u, v] is bounded and coercive.

For boundedness, we have

|Blu,v]| = ‘/ Du - Dvdi’
U

< |1Dull 2y 1OVI 2wy < Nlull oy V] -

le., a=1.



Application to Poisson’s Equation

For coercivity, we start with

Blu, u] :/U\Du|2d>_<’: HDuHiz(U).

We recall that Poincare's inequality (from Theorem 5.6.3) asserts
that there exists a constant C, depending only on n and U, so that

lullzuy < ClIDul 2 vy,
for all u € H3(U).



Application to Poisson’s Equation

We can write
1 2 1 2
Blu,u] = §||Du||L2(U) + §||DU||L2(U)

> o lluliaw + 5 1DulEa)
> B(llull22(0) + 1 DulEaquy)
:BHUH%-Il(U)v

for all u € H}(U). (Here, 8 = min{%, %})

The Lax-Milgram Theorem allows us to conclude immediately that
there exists a unique solution u € H3(U) to Poisson’s equation.



Proof of the Lax-Milgram Theorem

1. First, for each fixed u € H, the mapping T,v = B[u,v] is a
bounded linear functional on H. l.e.,

| Tuv] = [Blu, v]| < allull[|v]],
and linearity follows from the bilinearity of B.

We can conclude from the Riesz Representation Theorem that
there exists a unique w € H so that

Blu,v] =(w,v), VveH.

Let's denote by A: H — H the map that takes u € H as input and
returns w € H in this way. l.e.,

Blu,v] = (Au,v), Vv eH.



Proof of the Lax-Milgram Theorem

2. Claim 1. A€ H*.

To see that A is linear, let A1, \» € R, u1, up € H, and compute

<A(>\1U1 + )\2U2), V> = B[)\lul + Aoy, V]
:)\18[u1, V] + )\28[[]2, V]
= )\1(AU1, V) -+ )\Q(AUQ, V)
= ()\1AU1 + A2Aup, V).

Since this is true for all v € H, we can conclude that

A(A1u1 + Aawr) = AAu + M Auw,.



Proof of the Lax-Milgram Theorem

To see that A is bounded, we first note that there's nothing to
show if Au=0. If Au# 0, we compute

1Au|? = (Au, Au) = Blu, Au] < o ul|| Aul].

Dividing by ||Aul|, we see that

[Au] < alful.



Proof of the Lax-Milgram Theorem

3. Claim 2. Ais injective, and the range of A, R(A), is closed in
H.

To see that A is injective, we use coercivity to write
c.s.
Bllull?® < Blu, u] = (Au,u) < [|Aull]lull.
If [|u|| # 0, we divide to see that
[Aull > Blul.
(This is trivially true if ||u|| = 0.) In particular, if u1, us € H, then

|A(u1 — w2)|| > B|lur — w2, from which it's clear that A is
injective. (l.e., u1 # up = Auy # Aw.)



Proof of the Lax-Milgram Theorem

To see that R(A) is closed in H, let {u;}?2; C H satisfy Au; — w
for some w € H. We need to show that there exists u € H so that
Au=w (i.e., w € R(A)).

For this, we notice that

|ui — ujl| < Z[|Auj — Augl|.

2|
g
The sequence {AUj}f'il converges, so it must be Cauchy, so we see
that {v;}22; must be Cauchy, and so must converge to some

u € H. Since A is bounded,
|Au—wl| = lim ||Au— Auj|| < a lim ||u— uj|| = 0.
j—o0 j—o0
l.e., Au= w. (Alternatively, since A is bounded, we know from the

Closed Graph Theorem that A is closed, and this allows us to
conclude Au = w.)



Proof of the Lax-Milgram Theorem

4. Claim 3. R(A) = H.

Suppose not, and recall that since R(A) is closed, we can write
H = R(A) @ R(A)*.

If R(A) C H, then we can find w € R(A)*\{0}, and for this w we
will have

0+# ﬁ||w||2 < Blw,w] = (Aw, w) = 0,
which is a contradiction.

We can conclude from the Bounded Inverse Theorem that A has a
bounded linear inverse, A~1.



Proof of the Lax-Milgram Theorem

5. According to the Riesz Representation Theorem, for each
f € H* we can find a unique w € H so that

<f7 V> = (Wv V)
for all v € H. In this way, we see that we can solve
Blu,v] = (f,v), YveH
by solving
Blu,v] = (w,v), VveH.
Recalling that
Blu,v] = (Au,v), ¥YveH,

we see that Au = w, and the solution we're looking for is
u=A1lw.



Proof of the Lax-Milgram Theorem

6. For uniqueness, suppose u and i are two solutions so that

Blu,v] =(f,v) VYveH
Bld,v] =(f,v) Vv e€H.

Subtracting and using linearity, we see that
Blu—id,v]=0, VYveH.
Take v = u — i, and notice that (from coercivity)

1
|u— > < BB[u—ﬁ,u—ﬁ]zO.

le., u=1.



