Second Order Elliptic PDE: Interior H^{2} Regularity

MATH 612, Texas A\&M University

Spring 2020

Overview

Our next goal is to determine conditions under which our weak solutions $u \in H_{0}^{1}(U)$ (or $u \in H^{1}(U)$ for inhomogeneous boundary conditions) have additional regularity.

We recall that $\operatorname{Reg}\left(H^{1}\right)=1-\frac{n}{2}$, so for $n \geq 3$ we're starting with negative regularity. If we want classical solutions, we've got a long way to go.

Let's start with some formal considerations to get the ideas in mind. Suppose $u \in H^{1}(\mathbb{R})$ is a weak solution to Poisson's equation

$$
-\Delta u=f, \quad \text { in } \mathbb{R}^{n}
$$

for some $f \in L^{2}\left(\mathbb{R}^{n}\right)$. Although u is a weak solution, the strong formulation suggests that we might have $\Delta u \in L^{2}\left(\mathbb{R}^{n}\right)$. Could we use this to show that in fact $u \in H^{2}\left(\mathbb{R}^{n}\right)$?

Overview

Formally, we can compute

$$
\begin{aligned}
& \|f\|_{L^{2}\left(\mathbb{R}^{n}\right)}^{2}=\|\Delta u\|_{L^{2}(U)}^{2}=\int_{\mathbb{R}^{n}} \sum_{i=1}^{n} u_{x_{i} x_{i}} \sum_{j=1}^{n} u_{x_{j} x_{j}} d \vec{x} \\
& \stackrel{\text { parts } \times 2}{=} \int_{\mathbb{R}^{n}} \sum_{i, j=1}^{n} u_{x_{i} x_{j}}^{2} d \vec{x} .
\end{aligned}
$$

We see that $u_{x_{i} x_{j}} \in L^{2}\left(\mathbb{R}^{n}\right)$ for all $i, j \in\{1,2, \ldots, n\}$, so if $u \in H^{1}\left(\mathbb{R}^{n}\right)$ then $u \in H^{2}\left(\mathbb{R}^{n}\right)$.

Next, suppose that $f \in H^{1}\left(\mathbb{R}^{n}\right)$. Then we can push this idea further by setting $\tilde{u}=u_{x_{i}}$, so that

$$
-\Delta \tilde{u}=f_{x_{i}} \in L^{2}\left(\mathbb{R}^{n}\right) .
$$

We can conclude as before that $\tilde{u} \in H^{2}(U)$, and if we do this for all $i \in\{1,2, \ldots, n\}$, we can conclude that $u \in H^{3}\left(\mathbb{R}^{n}\right)$.

Overview

This type of argument is sometimes referred to as "bootstrapping." I.e., lifting yourself up by your own bootstraps.

To what extent can we make these ideas rigorous?

Interior H^{2} Regularity

Theorem 6.3.1. Suppose $U \subset \mathbb{R}^{n}$ is open and bounded, $a^{i j} \in C^{1}(U), b^{i}, c \in L^{\infty}(U)(\forall i, j \in\{1,2, \ldots n\})$, and L is uniformly elliptic. Also, suppose $f \in L^{2}(U)$, and $u \in H^{1}(U)$ (not necessarily $\left.H_{0}^{1}(U)\right)$ is a weak solution of

$$
L u=f \quad \text { in } U .
$$

Then $u \in H_{\text {loc }}^{2}(U)$, and for each $V \subset \subset U$, there exists a constant C, depending only on V, U, and the coefficients of L, so that

$$
\|u\|_{H^{2}(V)} \leq C\left(\|f\|_{L^{2}(U)}+\|u\|_{L^{2}(U)}\right)
$$

Interior H^{2} Regularity

Note. Recall that to say that $u \in H^{1}(U)$ is a weak solution of

$$
L u=f \quad \text { in } U,
$$

means that

$$
B[u, v]=(f, v) \quad \forall v \in H_{0}^{1}(U) .
$$

Under the assumptions of Theorem 6.3.1, we have additionally that $u \in H_{\text {loc }}^{2}(U)$.
For any $\phi \in C_{c}^{\infty}(U) \subset H_{0}^{1}(U)$, we can compute

$$
\begin{aligned}
& B[u, \phi]=\int_{U}\left\{\sum_{i, j=1}^{n} a^{i j} u_{x_{i}} \phi_{x_{j}}+\sum_{i=1}^{n} b^{i} u_{x_{i}} \phi+c u \phi\right\} d \vec{x} \\
& \stackrel{\text { parts }}{=} \int_{U}\left\{-\sum_{i, j=1}^{n}\left(a^{i j} u_{x_{i}}\right)_{x_{j}}+\sum_{i=1}^{n} b^{i} u_{x_{i}}+c u\right\} \phi d \vec{x} \\
&=(L u, \phi) .
\end{aligned}
$$

Interior H^{2} Regularity

On the other hand, since $C_{c}^{\infty}(U) \subset H_{0}^{1}(U)$, we have

$$
B[u, \phi]=(f, \phi) .
$$

Equating the two inner products, we see that

$$
(L u-f, \phi)=0
$$

for all $\phi \in C_{c}^{\infty}(U)$, and we can conclude from a class lemma that $L u=f$ for a.e. $\vec{x} \in U$.
I.e., Theorem 6.3.1 implies that our solution u solves the strong-form equation $L u=f$ in a pointwise sense (a.e.).

Proof of Theorem 6.3.1

0 . Since the proof is long, let's be clear at the outset about the strategy. Recall that $D_{k}^{h} u$ denotes the $k^{\text {th }}$ difference quotient of size h,

$$
D_{k}^{h} u(\vec{x})=\frac{u\left(\vec{x}+h \hat{e}_{k}\right)-u(\vec{x})}{h} .
$$

We'll show that for any $u \in H^{1}(U)$ as described in the theorem statement, and any fixed $V \subset \subset U$, there exists a constant \tilde{C}, depending only on U, V, and the coefficients of L, so that

$$
\left\|D_{k}^{h} D u\right\|_{L^{2}(V)} \leq \tilde{C}\left(\|f\|_{L^{2}(U)}+\|u\|_{L^{2}(U)}\right)
$$

for all $|h|$ sufficiently small.

Proof of Theorem 6.3.1

Using Theorem 5.8 .3 (ii), we'll be able to conclude that there exists a constant $\tilde{\tilde{C}}$, depending only on U, V, and the coefficients of L, so that

$$
\left\|D^{2} u\right\|_{L^{2}(V)} \leq \tilde{\tilde{C}}\left(\|f\|_{L^{2}(U)}+\|u\|_{L^{2}(U)}\right)
$$

giving the estimate we're looking for on the second derivative.
(First derivative estimates are easier.) The new constant $\tilde{\tilde{C}}$ arises because we've combined estimates in the latter inequality for all second order derivatives.

Here, recall that

$$
\left|D^{2} u\right|:=\left(\sum_{|\alpha|=2}\left|D^{\alpha} u\right|^{2}\right)^{1 / 2} .
$$

Proof of Theorem 6.3.1

1. Fix $V \subset \subset U$ and take an open set W so that $V \subset \subset W \subset \subset U$. Let $\zeta \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ denote a cut-off function so that

$$
\zeta= \begin{cases}1 & \vec{x} \in V \\ \in[0,1] & \vec{x} \in W \backslash V \\ 0 & \vec{x} \in \mathbb{R}^{n} \backslash W .\end{cases}
$$

See figure on the next slide.

Proof of Theorem 6.3.1

Proof of Theorem 6.3.1

2. Since $u \in H^{1}(U)$ is a weak solution of $L u=f$, we have

$$
\int_{U}\left\{\sum_{i, j=1}^{n} a^{i j} u_{x_{i}} v_{x_{j}}+\sum_{i=1}^{n} b^{i} u_{x_{i}} v+c u v\right\} d \vec{x}=\int_{U} f v d \vec{x}
$$

for all $v \in H_{0}^{1}(U)$. We can rearrange this relation as

$$
\int_{U} \sum_{i, j=1}^{n} a^{i j} u_{x_{i}} v_{x_{j}} d \vec{x}=\int_{U}\left\{f-\sum_{i=1}^{n} b^{i} u_{x_{i}}-c u\right\} v d \vec{x}
$$

Notice that since $u \in H^{1}(U)$ and $f \in L^{2}(U)$, the function

$$
\tilde{f}:=f-\sum_{i=1}^{n} b^{i} u_{x_{i}}-c u
$$

satisfies $\tilde{f} \in L^{2}(U)$.

Proof of Theorem 6.3.1

l.e., for $\tilde{f} \in L^{2}(U)$,

$$
\int_{U} \sum_{i, j=1}^{n} a^{i j} u_{x_{i}} v_{x_{j}} d \vec{x}=(\tilde{f}, v)
$$

for all $v \in H_{0}^{1}(U)$.
The key point in the proof consists of choosing v appropriately. Thinking formally, we would like to choose $v=u_{x_{k} x_{k}}$, integrate by parts similarly as in the overview and then finish off the proof by using uniform ellipticity.

Proof of Theorem 6.3.1

3. As specified on our figure, we let

$$
\begin{aligned}
& 0<|h|<\frac{1}{4} \operatorname{dist}(V, \partial U) \\
& 0<|h|<\frac{1}{3} \operatorname{dist}(W, \partial U)
\end{aligned}
$$

Here, we're saving some room to insert another set with a factor of $\frac{1}{2}$.

For $k \in\{1,2, \ldots, n\}$, we set

$$
v(\vec{x}):=-D_{k}^{-h}\left(\zeta(\vec{x})^{2} D_{k}^{h} u(\vec{x})\right) .
$$

Notice that since $\operatorname{spt}(\zeta) \subset \bar{W},|h|$ is small enough so that $v(\vec{x})$ is 0 for \vec{x} close enough to ∂U. Otherwise, for each fixed h, with $|h|>0$, $v(\vec{x})$ is a linear combination of $H^{1}(U)$ functions, so $v \in H_{0}^{1}(U)$.

Also, aside from $\zeta(\vec{x})^{2}$, which is identially 1 on V, this is a standard second order finite difference approximation of $-u_{x_{k} x_{k}}$.

Proof of Theorem 6.3.1

We now substitute v into

$$
\int_{U} \sum_{i, j=1}^{n} a^{i j} u_{x_{i}} v_{x_{j}} d \vec{x}=(\tilde{f}, v)
$$

In the next steps of the proof, we'll denote the resulting left-hand side by A and the resulting right-hand side by B.
4. In this step, we'll develop our estimate on A. First, fix any
$\tilde{U} \subset \subset U$ and $0<|h|<\operatorname{dist}(\tilde{U}, \partial U)$.
Claim 1. We can integrate by parts in the following way,

$$
\int_{U} u(\vec{x}) D_{k}^{-h} \phi(\vec{x}) d \vec{x}=-\int_{U} \phi(\vec{x}) D_{k}^{h} u(\vec{x}) d \vec{x}
$$

for all $\phi \in C_{c}^{\infty}(\tilde{U})$. Moreover, this is true for $\phi(\vec{x})=\zeta(\vec{x})^{2} D_{k}^{h} u(\vec{x})$.

Proof of Theorem 6.3.1

To see this, we write

$$
\begin{aligned}
& \int_{U} u(\vec{x}) D_{k}^{-h} \phi(\vec{x}) d \vec{x}=\int_{U} u(\vec{x}) \frac{\phi\left(\vec{x}-h \hat{e}_{k}\right)-\phi(\vec{x})}{-h} d \vec{x} \\
& =-\int_{\operatorname{spt}\left(\phi\left(\cdot-h \hat{e}_{k}\right)\right)} u(\vec{x}) \frac{\phi\left(\vec{x}-h \hat{e}_{k}\right)}{h} d \vec{x}+\int_{\tilde{U}} \frac{u(\vec{x}) \phi(\vec{x})}{h} d \vec{x} .
\end{aligned}
$$

Set $\vec{y}=\vec{x}-h \hat{e}_{k}$ in the first integral to get

$$
\begin{aligned}
& -\int_{\tilde{U}} u\left(\vec{y}+h \hat{e}_{k}\right) \frac{\phi(\vec{y})}{h} d \vec{y}+\int_{\tilde{U}} \frac{u(\vec{x}) \phi(\vec{x})}{h} d \vec{x} \\
= & -\int_{\tilde{U}} \phi(\vec{x}) D_{k}^{h} u(\vec{x}) d \vec{x}=-\int_{U} \phi(\vec{x}) D_{k}^{h} u(\vec{x}) d \vec{x} .
\end{aligned}
$$

Precisely the same calculation works with $\phi(\vec{x})=\zeta(\vec{x})^{2} D_{k}^{h} u(\vec{x})$, with $W \subset \subset \tilde{U} \subset \subset U$.

Proof of Theorem 6.3.1

Claim 2. We have the product rule

$$
D_{k}^{h}(v w)=v^{h} D_{k}^{h} w+w D_{k}^{h} v,
$$

for any u and v defined a.e. where evaluated. Here, $v^{h}(\vec{x}):=v\left(\vec{x}+h \hat{e}_{k}\right)$.

For this one, we compute

$$
\begin{aligned}
D_{k}^{h}(v w) & =\frac{v\left(\vec{x}+h \hat{e}_{k}\right) w\left(\vec{x}+h \hat{e}_{k}\right)-v(\vec{x}) w(\vec{x})}{h} \\
& =\frac{v\left(\vec{x}+h \hat{e}_{k}\right) w\left(\vec{x}+h \hat{e}_{k}\right)-v\left(\vec{x}+h \hat{e}_{k}\right) w(\vec{x})}{h} \\
& +\frac{v\left(\vec{x}+h \hat{e}_{k}\right) w(\vec{x})-v(\vec{x}) w(\vec{x})}{h} \\
& =v^{h}(\vec{x}) D_{k}^{h} w(\vec{x})+w(\vec{x}) D_{k}^{h} v(\vec{x}) .
\end{aligned}
$$

Proof of Theorem 6.3.1

Now, for $v=-D_{k}^{-h}\left(\zeta^{2} D_{k}^{h} u\right)$, we use Claims 1 and 2 to compute

$$
\begin{aligned}
& A=\sum_{i, j=1}^{n} \int_{U} a^{i j} u_{x_{i}} v_{x_{j}} d \vec{x}=-\sum_{i, j=1}^{n} \int_{U} a^{i j} u_{x_{i}}\left\{D_{k}^{-h}\left(\zeta^{2} D_{k}^{h} u\right)\right\}_{x_{j}} d \vec{x} \\
& \stackrel{\text { claaim1 }}{=} \sum_{i, j=1}^{n} \int_{U} D_{k}^{h}\left(a^{i j} u_{x_{i}}\right)\left(\zeta^{2} D_{k}^{h} u\right)_{x_{j}} d \vec{x} \\
& \stackrel{\text { claaim } 2}{=} \sum_{i, j=1}^{n} \int_{U}\left\{a^{i j, h}\left(D_{k}^{h} u_{x_{i}}\right)+u_{x_{i}}\left(D_{k}^{h} a^{i j}\right)\right\}\left(\zeta^{2} D_{k}^{h} u_{x_{j}}+2 \zeta \zeta_{x_{j}} D_{k}^{h} u\right) d \vec{x} \\
& =\sum_{i, j=1}^{n} \int_{U} a^{i j, h}\left(D_{k}^{h} u_{x_{i}}\right)\left(\zeta^{2} D_{k}^{h} u_{x_{j}}\right) d \vec{x} \\
& \quad+\sum_{i, j=1}^{n} \int_{U}\left\{a^{i j, h}\left(D_{k}^{h} u_{x_{i}}\right)\left(2 \zeta \zeta_{x_{j}} D_{k}^{h} u\right)+u_{x_{i}}\left(D_{k}^{h} a^{i j}\right)\left(\zeta^{2} D_{k}^{h} u_{x_{j}}\right)\right. \\
& \\
& \left.\quad+\quad u_{x_{i}}\left(D_{k}^{h} a^{i j}\right) 2 \zeta \zeta_{x_{j}}\left(D_{k}^{h} u\right)\right\} d \vec{x} .
\end{aligned}
$$

Proof of Theorem 6.3.1

In this last expression, we'll set

$$
A_{1}=\sum_{i, j=1}^{n} \int_{U} a^{i j, h}\left(D_{k}^{h} u_{x_{i}}\right)\left(\zeta^{2} D_{k}^{h} u_{x_{j}}\right) d \vec{x},
$$

and we'll denote the remaining terms A_{2}.
By uniform ellipticity, we see that

$$
A_{1} \geq \theta \int_{U} \zeta^{2}\left|D_{k}^{h} D u\right|^{2} d \vec{x}
$$

for some $\theta>0$.

Proof of Theorem 6.3.1

For A_{2}, we can write

$$
\begin{aligned}
\left|A_{2}\right| & \leq \sum_{i, j=1}^{n} \int_{U}\left\{\left|a^{i j, h}\right|\left|D_{k}^{h} u_{x_{i}}\right| 2 \zeta\left|\zeta_{x_{j}}\right|\left|D_{k}^{h} u\right|+\left|u_{x_{i}}\right|\left|D_{k}^{h} a^{i j}\right| \zeta^{2}\left|D_{k}^{h} u_{x_{j}}\right|\right. \\
& \left.+\quad\left|u_{x_{i}}\right|\left|D_{k}^{h} a^{i j}\right| 2 \zeta\left|\zeta_{x_{j}}\right|\left|D_{k}^{h} u\right|\right\} d \vec{x} . \\
& \leq C_{1} \int_{U}\left\{\zeta\left|D_{k}^{h} D u\right|\left|D_{k}^{h} u\right|+\zeta|D u|\left|D_{k}^{h} D u\right|+\zeta|D u|\left|D_{k}^{h} u\right|\right\} d \vec{x}
\end{aligned}
$$

for some constant C_{1}. Here, the terms shaded red are bounded and incorporated into the constant C_{1}.

We now want to estimate this final expression in such a way that the contribution from the terms in blue is small. We'll use the ϵ-Young's inequality

$$
a b \leq \epsilon a^{2}+\frac{1}{4 \epsilon} b^{2}
$$

Proof of Theorem 6.3.1

We get

$$
\begin{aligned}
\left(\zeta\left|D_{k}^{h} D u\right|\right)\left|D_{k}^{h} u\right| & \leq \epsilon \zeta^{2}\left|D_{k}^{h} D u\right|^{2}+\frac{1}{4 \epsilon}\left|D_{k}^{h} u\right|^{2} \\
\left(\zeta\left|D_{k}^{h} D u\right|\right)|D u| & \leq \epsilon \zeta^{2}\left|D_{k}^{h} D u\right|^{2}+\frac{1}{4 \epsilon}|D u|^{2}
\end{aligned}
$$

We'll also use the usual Young's inequality to write

$$
\zeta|D u|\left|D_{k}^{h} u\right| \leq \zeta\left(\frac{1}{2}|D u|^{2}+\frac{1}{2}\left|D_{k}^{h} u\right|^{2}\right) .
$$

Combining these observations, we obtain the inequality

$$
\left|A_{2}\right| \leq 2 C_{1} \epsilon \int_{U} \zeta^{2}\left|D_{k}^{h} D u\right|^{2} d \vec{x}+K_{\epsilon} \int_{W}\left|D_{k}^{h} u\right|^{2}+|D u|^{2} d \vec{x}
$$

for some constant K_{ϵ} that grows as ϵ is reduced.

Proof of Theorem 6.3.1

In both integrals, the integration is only over W due to the support of ζ. Since ζ has been incorporated into the constant K_{ϵ} for the second integral, this has been made explicit.

We now choose $\epsilon>0$ small enough so that $2 C_{1} \epsilon \leq \frac{\theta}{2}$. Then

$$
\left|A_{2}\right| \leq \frac{\theta}{2} \int_{U} \zeta^{2}\left|D_{k}^{h} D u\right|^{2} d \vec{x}+K_{\epsilon} \int_{W}\left|D_{k}^{h} u\right|^{2}+|D u|^{2} d \vec{x}
$$

From Theorem 5.8.3 (i), we know that since $u \in H^{1}(U)$ and $W \subset \subset U$, there exists a constant C_{2}, depending only on W and U, so that

$$
\left\|D_{k}^{h} u\right\|_{L^{2}(W)} \leq C_{2}\|D u\|_{L^{2}(U)}
$$

for all $0<|h|<\frac{1}{3} \operatorname{dist}(W, \partial U)$. (In the statement of Theorem 5.8.3, $\frac{1}{2}$ is used in place of $\frac{1}{3}$.)

Proof of Theorem 6.3.1

This allows us to write

$$
\left|A_{2}\right| \leq \frac{\theta}{2} \int_{U} \zeta^{2}\left|D_{k}^{h} D u\right|^{2} d \vec{x}+\tilde{K}_{\epsilon} \int_{U}|D u|^{2} d \vec{x}
$$

Combining these observations, we see that

$$
\begin{aligned}
A & =A_{1}+A_{2} \geq A_{1}-\left|A_{2}\right| \\
& \geq \theta \int_{U} \zeta^{2}\left|D_{k}^{h} D u\right|^{2} d \vec{x}-\frac{\theta}{2} \int_{U} \zeta^{2}\left|D_{k}^{h} D u\right|^{2} d \vec{x}-\tilde{K}_{\epsilon} \int_{U}|D u|^{2} d \vec{x} \\
& =\frac{\theta}{2} \int_{U} \zeta^{2}\left|D_{k}^{h} D u\right|^{2} d \vec{x}-\tilde{K}_{\epsilon} \int_{U}|D u|^{2} d \vec{x}
\end{aligned}
$$

Proof of Theorem 6.3.1

5. In this step, we'll develop our estimate on $B=(\tilde{f}, v)$, recalling that $\tilde{f}=f-\sum_{i=1}^{n} b^{i} u_{x_{i}}-c u$ and $v(\vec{x}):=-D_{k}^{-h}\left(\zeta(\vec{x})^{2} D_{k}^{h} u(\vec{x})\right)$.

We have

$$
\begin{aligned}
& |B|=|(\tilde{f}, v)|=\left|\left(f-\sum_{i=1}^{n} b^{i} u_{x_{i}}-c u, v\right)\right| \\
& \quad \leq C_{3} \int_{U}(|f|+|D u|+|u|)|v| d \vec{x} \\
& \stackrel{\epsilon-\text { Young's }}{\leq} 3 C_{3} \epsilon \int_{U}|v|^{2} d \vec{x}+\mathcal{K}_{\epsilon} \int_{U}|f|^{2}+|D u|^{2}+|u|^{2} d \vec{x} .
\end{aligned}
$$

Here,

$$
\int_{U}|v|^{2} d \vec{x}=\int_{U}\left|D_{k}^{-h}\left(\zeta^{2} D_{k}^{h} u\right)\right|^{2} d \vec{x}
$$

Proof of Theorem 6.3.1

Similarly as with our discussion for v, we have $\zeta^{2} D_{k}^{h} u \in H_{0}^{1}(U)$. Also, since $\operatorname{spt}(\zeta) \subset \bar{W}$, we can write

$$
\int_{U}\left|D_{k}^{-h}\left(\zeta^{2} D_{k}^{h} u\right)\right|^{2} d \vec{x}=\int_{W_{h}}\left|D_{k}^{-h}\left(\zeta^{2} D_{k}^{h} u\right)\right|^{2} d \vec{x}
$$

for a set W_{h} so that

$$
0<|h|<\frac{1}{2} \operatorname{dist}\left(W_{h}, \partial U\right) .
$$

(Using W_{h} because of the shift on ζ.)
We can now apply Theorem 5.8.3 (i) to see that

$$
\begin{aligned}
\int_{U}|v|^{2} d \vec{x} & =\int_{W_{h}}\left|D_{k}^{-h}\left(\zeta^{2} D_{k}^{h} u\right)\right|^{2} d \vec{x} \\
& \leq C_{4} \int_{U}\left|D\left(\zeta^{2} D_{k}^{h} u\right)\right|^{2} d \vec{x}
\end{aligned}
$$

Proof of Theorem 6.3.1

Using $\operatorname{spt}(\zeta) \subset \bar{W}$ and the product rule, we can write

$$
\begin{aligned}
C_{4} \int_{U}\left|D\left(\zeta^{2} D_{k}^{h} u\right)\right|^{2} d \vec{x} & =C_{4} \int_{W}\left|\left(D \zeta^{2}\right) D_{k}^{h} u+\zeta^{2} D D_{k}^{h} u\right|^{2} d \vec{x} \\
& \leq C_{5} \int_{W}\left|D_{k}^{h} u\right|^{2}+\zeta^{2}\left|D_{k}^{h} D u\right|^{2} d \vec{x} \\
& \leq C_{6} \int_{U}|D u|^{2}+\zeta^{2}\left|D_{k}^{h} D u\right|^{2} d \vec{x}
\end{aligned}
$$

In obtaining the second summand in the second line, a factor of ζ^{2} was incorporated into C_{5}, and we observed that D and D_{k}^{h} commute. In obtaining the first summand in the third line, we used Theorem 5.8.3 (i).

Proof of Theorem 6.3.1

To recap, we now have

$$
|B| \leq 3 C_{3} \epsilon \int_{U}|v|^{2} d \vec{x}+\mathcal{K}_{\epsilon} \int_{U}|f|^{2}+|D u|^{2}+|u|^{2} d \vec{x}
$$

and

$$
\int_{U}|v|^{2} d \vec{x} \leq C_{6} \int_{U}|D u|^{2}+\zeta^{2}\left|D_{k}^{h} D u\right|^{2} d \vec{x}
$$

Combining, we see that for some constants C_{7} and $\tilde{\mathcal{K}}_{\epsilon}$, we can write

$$
|B| \leq C_{7} \epsilon \int_{U} \zeta^{2}\left|D_{k}^{h} D u\right|^{2} d \vec{x}+\tilde{\mathcal{K}}_{\epsilon} \int_{U}|f|^{2}+|D u|^{2}+|u|^{2} d \vec{x}
$$

We choose ϵ small enough so that $C_{7} \epsilon \leq \frac{\theta}{4}$, giving

$$
|B| \leq \frac{\theta}{4} \int_{U} \zeta^{2}\left|D_{k}^{h} D u\right|^{2} d \vec{x}+\tilde{\mathcal{K}}_{\epsilon} \int_{U}|f|^{2}+|D u|^{2}+|u|^{2} d \vec{x}
$$

Proof of Theorem 6.3.1

6. Recalling that $A=B$ and

$$
A \geq \frac{\theta}{2} \int_{U} \zeta^{2}\left|D_{k}^{h} D u\right|^{2} d \vec{x}-\tilde{K}_{\epsilon} \int_{U}|D u|^{2} d \vec{x}
$$

we now have

$$
\begin{aligned}
0 & =A-B \geq A-|B| \\
& \geq \frac{\theta}{4} \int_{U} \zeta^{2}\left|D_{k}^{h} D u\right|^{2} d \vec{x}-\mathrm{K}_{\epsilon} \int_{U}|f|^{2}+|D u|^{2}+|u|^{2} d \vec{x}
\end{aligned}
$$

Turning this around, we see that

$$
\int_{U} \zeta^{2}\left|D_{k}^{h} D u\right|^{2} d \vec{x} \leq C_{8} \int_{U}|f|^{2}+|D u|^{2}+|u|^{2} d \vec{x}
$$

Since $\zeta \equiv 1$ on V, we have

$$
\int_{V}\left|D_{k}^{h} D u\right|^{2} d \vec{x} \leq C_{8} \int_{U}|f|^{2}+|D u|^{2}+|u|^{2} d \vec{x}
$$

Proof of Theorem 6.3.1

This is true for all $0<|h|<\frac{1}{4} \operatorname{dist}(V, \partial U)$. Noting that we have an estimate of this form for each k, we can conclude from (a slight restatement of) Theorem 5.8 .3 (ii) that $u_{x_{j}} \in H^{1}(V)$ for each $j \in\{1,2, \ldots, n\}$, and

$$
\left\|D^{2} u\right\|_{L^{2}(V)}^{2} \leq C_{9} \int_{U}|f|^{2}+|D u|^{2}+|u|^{2} d \vec{x}
$$

Since $V \subset \subset U$ is arbitrary, we can conclude that $u \in H_{\mathrm{loc}}^{2}(U)$ and

$$
\|u\|_{H^{2}(V)} \leq C_{10}\left(\|f\|_{L^{2}(U)}+\|u\|_{H^{1}(U)}\right) .
$$

7. Last, we need to show that on the right-hand side of this final inequality, we can replace $\|u\|_{H^{1}(U)}$ with $\|u\|_{L^{2}(U)}$.

Proof of Theorem 6.3.1

Recalling that $V \subset \subset W \subset \subset U$, we introduce a new open set \tilde{V} so that $V \subset \subset \tilde{V} \subset \subset W$. Proceeding exactly as in Steps $1-6$ with V, \tilde{V}, W respectively replacing the roles of V, W, U, we immediately arrive at the inequality

$$
\|u\|_{H^{2}(V)} \leq C_{11}\left(\|f\|_{L^{2}(W)}+\|u\|_{H^{1}(W)}\right) .
$$

Finally, we introduce one last open set \tilde{W} so that $W \subset \subset \tilde{W} \subset \subset U$, and we take $\zeta \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ to be a new cut-off function satisfying

$$
\zeta(\vec{x})= \begin{cases}1 & \vec{x} \in W \\ \in[0,1] & \vec{x} \in \tilde{W} \backslash W \\ 0 & \vec{x} \in \mathbb{R}^{n} \backslash \tilde{W}\end{cases}
$$

Proof of Theorem 6.3.1

We now return in the proof all the way to the end of Step 3, when we wrote the relation

$$
\sum_{i, j=1}^{n} \int_{U} a^{i j} u_{x_{i}} v_{x_{j}} d \vec{x}=(\tilde{f}, v) \quad \forall v \in H_{0}^{1}(U)
$$

We'll check in the homework that if we set $v=\zeta^{2} u$ and proceed similarly as above, we obtain the inequality

$$
\int_{W}|D u|^{2} d \vec{x} \leq C_{12}\left(\|f\|_{L^{2}(U)}^{2}+\|u\|_{L^{2}(U)}^{2}\right)
$$

so that

$$
\|u\|_{H^{1}(W)} \leq C_{13}\left(\|f\|_{L^{2}(U)}+\|u\|_{L^{2}(U)}\right),
$$

and this gives the inequality stated in the theorem.

