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Overview

Our next goal is to determine conditions under which our weak
solutions u ∈ H1

0 (U) (or u ∈ H1(U) for inhomogeneous boundary
conditions) have additional regularity.

We recall that Reg (H1) = 1− n
2 , so for n ≥ 3 we’re starting with

negative regularity. If we want classical solutions, we’ve got a long
way to go.

Let’s start with some formal considerations to get the ideas in
mind. Suppose u ∈ H1(R) is a weak solution to Poisson’s equation

−∆u = f , in Rn

for some f ∈ L2(Rn). Although u is a weak solution, the strong
formulation suggests that we might have ∆u ∈ L2(Rn). Could we
use this to show that in fact u ∈ H2(Rn)?



Overview

Formally, we can compute

‖f ‖2L2(Rn) = ‖∆u‖2L2(U) =

∫
Rn

n∑
i=1

uxixi

n∑
j=1

uxjxjd~x

parts×2
=

∫
Rn

n∑
i ,j=1

u2
xixj

d~x .

We see that uxixj ∈ L2(Rn) for all i , j ∈ {1, 2, . . . , n}, so if
u ∈ H1(Rn) then u ∈ H2(Rn).

Next, suppose that f ∈ H1(Rn). Then we can push this idea
further by setting ũ = uxi , so that

−∆ũ = fxi ∈ L2(Rn).

We can conclude as before that ũ ∈ H2(U), and if we do this for all
i ∈ {1, 2, . . . , n}, we can conclude that u ∈ H3(Rn).



Overview

This type of argument is sometimes referred to as “bootstrapping.”
I.e., lifting yourself up by your own bootstraps.

To what extent can we make these ideas rigorous?



Interior H2 Regularity

Theorem 6.3.1. Suppose U ⊂ Rn is open and bounded,
aij ∈ C 1(U), bi , c ∈ L∞(U) (∀ i , j ∈ {1, 2, . . . n}), and L is
uniformly elliptic. Also, suppose f ∈ L2(U), and u ∈ H1(U) (not
necessarily H1

0 (U)) is a weak solution of

Lu = f in U.

Then u ∈ H2
loc(U), and for each V ⊂⊂ U, there exists a constant

C , depending only on V , U, and the coefficients of L, so that

‖u‖H2(V ) ≤ C (‖f ‖L2(U) + ‖u‖L2(U)).



Interior H2 Regularity

Note. Recall that to say that u ∈ H1(U) is a weak solution of

Lu = f in U,

means that
B[u, v ] = (f , v) ∀ v ∈ H1

0 (U).

Under the assumptions of Theorem 6.3.1, we have additionally that
u ∈ H2

loc(U).

For any φ ∈ C∞c (U) ⊂ H1
0 (U), we can compute

B[u, φ] =

∫
U

{ n∑
i ,j=1

aijuxiφxj +
n∑

i=1

biuxiφ+ cuφ
}
d~x

parts
=

∫
U

{
−

n∑
i ,j=1

(aijuxi )xj +
n∑

i=1

biuxi + cu
}
φd~x

= (Lu, φ).



Interior H2 Regularity

On the other hand, since C∞c (U) ⊂ H1
0 (U), we have

B[u, φ] = (f , φ).

Equating the two inner products, we see that

(Lu − f , φ) = 0

for all φ ∈ C∞c (U), and we can conclude from a class lemma that
Lu = f for a.e. ~x ∈ U.

I.e., Theorem 6.3.1 implies that our solution u solves the
strong-form equation Lu = f in a pointwise sense (a.e.).



Proof of Theorem 6.3.1

0. Since the proof is long, let’s be clear at the outset about the
strategy. Recall that Dh

ku denotes the kth difference quotient of
size h,

Dh
ku(~x) =

u(~x + hêk)− u(~x)

h
.

We’ll show that for any u ∈ H1(U) as described in the theorem
statement, and any fixed V ⊂⊂ U, there exists a constant C̃ ,
depending only on U, V , and the coefficients of L, so that

‖Dh
kDu‖L2(V ) ≤ C̃ (‖f ‖L2(U) + ‖u‖L2(U))

for all |h| sufficiently small.



Proof of Theorem 6.3.1

Using Theorem 5.8.3 (ii), we’ll be able to conclude that there exists
a constant ˜̃C , depending only on U, V , and the coefficients of L, so
that

‖D2u‖L2(V ) ≤
˜̃C (‖f ‖L2(U) + ‖u‖L2(U)),

giving the estimate we’re looking for on the second derivative.
(First derivative estimates are easier.) The new constant ˜̃C arises
because we’ve combined estimates in the latter inequality for all
second order derivatives.

Here, recall that

|D2u| := (
∑
|α|=2

|Dαu|2)1/2.



Proof of Theorem 6.3.1

1. Fix V ⊂⊂ U and take an open set W so that V ⊂⊂W ⊂⊂ U.
Let ζ ∈ C∞c (Rn) denote a cut-off function so that

ζ =


1 ~x ∈ V

∈ [0, 1] ~x ∈W \V
0 ~x ∈ Rn\W .

See figure on the next slide.



Proof of Theorem 6.3.1



Proof of Theorem 6.3.1

2. Since u ∈ H1(U) is a weak solution of Lu = f , we have∫
U

{ n∑
i ,j=1

aijuxi vxj +
n∑

i=1

biuxi v + cuv
}
d~x =

∫
U
fvd~x

for all v ∈ H1
0 (U). We can rearrange this relation as∫

U

n∑
i ,j=1

aijuxi vxjd~x =

∫
U

{
f −

n∑
i=1

biuxi − cu
}
vd~x .

Notice that since u ∈ H1(U) and f ∈ L2(U), the function

f̃ := f −
n∑

i=1

biuxi − cu

satisfies f̃ ∈ L2(U).



Proof of Theorem 6.3.1

I.e., for f̃ ∈ L2(U), ∫
U

n∑
i ,j=1

aijuxi vxjd~x = (f̃ , v)

for all v ∈ H1
0 (U).

The key point in the proof consists of choosing v appropriately.
Thinking formally, we would like to choose v = uxkxk , integrate by
parts similarly as in the overview and then finish off the proof by
using uniform ellipticity.



Proof of Theorem 6.3.1

3. As specified on our figure, we let

0 < |h| < 1
4
dist(V , ∂U)

0 < |h| < 1
3
dist(W , ∂U).

Here, we’re saving some room to insert another set with a factor of
1
2 .

For k ∈ {1, 2, . . . , n}, we set

v(~x) := −D−hk (ζ(~x)2Dh
ku(~x)).

Notice that since spt(ζ) ⊂W , |h| is small enough so that v(~x) is 0
for ~x close enough to ∂U. Otherwise, for each fixed h, with |h| > 0,
v(~x) is a linear combination of H1(U) functions, so v ∈ H1

0 (U).

Also, aside from ζ(~x)2, which is identially 1 on V , this is a standard
second order finite difference approximation of −uxkxk .



Proof of Theorem 6.3.1

We now substitute v into∫
U

n∑
i ,j=1

aijuxi vxjd~x = (f̃ , v).

In the next steps of the proof, we’ll denote the resulting left-hand
side by A and the resulting right-hand side by B .

4. In this step, we’ll develop our estimate on A. First, fix any
Ũ ⊂⊂ U and 0 < |h| < dist(Ũ, ∂U).

Claim 1. We can integrate by parts in the following way,∫
U
u(~x)D−hk φ(~x)d~x = −

∫
U
φ(~x)Dh

ku(~x)d~x

for all φ ∈ C∞c (Ũ). Moreover, this is true for φ(~x) = ζ(~x)2Dh
ku(~x).



Proof of Theorem 6.3.1

To see this, we write∫
U
u(~x)D−hk φ(~x)d~x =

∫
U
u(~x)

φ(~x − hêk)− φ(~x)

−h
d~x

= −
∫

spt(φ(·−hêk ))
u(~x)

φ(~x − hêk)

h
d~x +

∫
Ũ

u(~x)φ(~x)

h
d~x .

Set ~y = ~x − hêk in the first integral to get

−
∫
Ũ
u(~y + hêk)

φ(~y)

h
d~y +

∫
Ũ

u(~x)φ(~x)

h
d~x

= −
∫
Ũ
φ(~x)Dh

ku(~x)d~x = −
∫
U
φ(~x)Dh

ku(~x)d~x .

Precisely the same calculation works with φ(~x) = ζ(~x)2Dh
ku(~x),

with W ⊂⊂ Ũ ⊂⊂ U.



Proof of Theorem 6.3.1

Claim 2. We have the product rule

Dh
k (vw) = vhDh

kw + wDh
k v ,

for any u and v defined a.e. where evaluated. Here,
vh(~x) := v(~x + hêk).

For this one, we compute

Dh
k (vw) =

v(~x + hêk)w(~x + hêk)− v(~x)w(~x)

h

=
v(~x + hêk)w(~x + hêk)− v(~x + hêk)w(~x)

h

+
v(~x + hêk)w(~x)− v(~x)w(~x)

h

= vh(~x)Dh
kw(~x) + w(~x)Dh

k v(~x).



Proof of Theorem 6.3.1

Now, for v = −D−hk (ζ2Dh
ku), we use Claims 1 and 2 to compute

A =
n∑

i,j=1

∫
U

aijuxi vxjd~x = −
n∑

i,j=1

∫
U

aijuxi

{
D−h

k (ζ2Dh
k u)
}
xj
d~x

claim1
=

n∑
i,j=1

∫
U

Dh
k (aijuxi )(ζ2Dh

k u)xjd~x

claim2
=

n∑
i,j=1

∫
U

{
aij, h(Dh

k uxi ) + uxi (D
h
k a

ij)
}

(ζ2Dh
k uxj + 2ζζxjD

h
k u)d~x

=
n∑

i,j=1

∫
U

aij, h(Dh
k uxi )(ζ2Dh

k uxj )d~x

+
n∑

i,j=1

∫
U

{
aij, h(Dh

k uxi )(2ζζxjD
h
k u) + uxi (D

h
k a

ij)(ζ2Dh
k uxj )

+ uxi (D
h
k a

ij)2ζζxj (D
h
k u)
}
d~x .



Proof of Theorem 6.3.1

In this last expression, we’ll set

A1 =
n∑

i ,j=1

∫
U
aij , h(Dh

kuxi )(ζ2Dh
kuxj )d~x ,

and we’ll denote the remaining terms A2.

By uniform ellipticity, we see that

A1 ≥ θ
∫
U
ζ2|Dh

kDu|2d~x ,

for some θ > 0.



Proof of Theorem 6.3.1

For A2, we can write

|A2| ≤
n∑

i ,j=1

∫
U

{
|aij , h||Dh

kuxi |2ζ|ζxj ||D
h
ku|+ |uxi ||D

h
k a

ij |ζ2|Dh
kuxj |

+ |uxi ||D
h
k a

ij |2ζ|ζxj ||D
h
ku|
}
d~x .

≤C1

∫
U

{
ζ|Dh

kDu||Dh
ku|+ ζ|Du||Dh

kDu|+ ζ|Du||Dh
ku|
}
d~x

for some constant C1. Here, the terms shaded red are bounded and
incorporated into the constant C1.

We now want to estimate this final expression in such a way that
the contribution from the terms in blue is small. We’ll use the
ε-Young’s inequality

ab ≤ εa2 +
1
4ε

b2.



Proof of Theorem 6.3.1

We get

(ζ|Dh
kDu|)|Dh

ku| ≤ εζ2|Dh
kDu|2 +

1
4ε
|Dh

ku|2

(ζ|Dh
kDu|)|Du| ≤ εζ2|Dh

kDu|2 +
1
4ε
|Du|2.

We’ll also use the usual Young’s inequality to write

ζ|Du||Dh
ku| ≤ ζ

(1
2
|Du|2 +

1
2
|Dh

ku|2
)
.

Combining these observations, we obtain the inequality

|A2| ≤ 2C1ε

∫
U
ζ2|Dh

kDu|2d~x + Kε

∫
W
|Dh

ku|2 + |Du|2d~x ,

for some constant Kε that grows as ε is reduced.



Proof of Theorem 6.3.1

In both integrals, the integration is only over W due to the support
of ζ. Since ζ has been incorporated into the constant Kε for the
second integral, this has been made explicit.

We now choose ε > 0 small enough so that 2C1ε ≤ θ
2 . Then

|A2| ≤
θ

2

∫
U
ζ2|Dh

kDu|2d~x + Kε

∫
W
|Dh

ku|2 + |Du|2d~x .

From Theorem 5.8.3 (i), we know that since u ∈ H1(U) and
W ⊂⊂ U, there exists a constant C2, depending only on W and U,
so that

‖Dh
ku‖L2(W ) ≤ C2‖Du‖L2(U)

for all 0 < |h| < 1
3dist(W , ∂U). (In the statement of Theorem

5.8.3, 1
2 is used in place of 1

3 .)



Proof of Theorem 6.3.1

This allows us to write

|A2| ≤
θ

2

∫
U
ζ2|Dh

kDu|2d~x + K̃ε

∫
U
|Du|2d~x .

Combining these observations, we see that

A =A1 + A2 ≥ A1 − |A2|

≥ θ
∫
U
ζ2|Dh

kDu|2d~x −
θ

2

∫
U
ζ2|Dh

kDu|2d~x − K̃ε

∫
U
|Du|2d~x

=
θ

2

∫
U
ζ2|Dh

kDu|2d~x − K̃ε

∫
U
|Du|2d~x .



Proof of Theorem 6.3.1

5. In this step, we’ll develop our estimate on B = (f̃ , v), recalling
that f̃ = f −

∑n
i=1 b

iuxi − cu and v(~x) := −D−hk (ζ(~x)2Dh
ku(~x)).

We have

|B| = |(f̃ , v)| = |(f −
n∑

i=1

biuxi − cu, v)|

≤C3

∫
U

(
|f |+ |Du|+ |u|

)
|v |d~x

ε−Young′s
≤ 3C3ε

∫
U
|v |2d~x +Kε

∫
U
|f |2 + |Du|2 + |u|2d~x .

Here, ∫
U
|v |2d~x =

∫
U
|D−hk (ζ2Dh

ku)|2d~x .



Proof of Theorem 6.3.1

Similarly as with our discussion for v , we have ζ2Dh
ku ∈ H1

0 (U).
Also, since spt(ζ) ⊂W , we can write∫

U
|D−hk (ζ2Dh

ku)|2d~x =

∫
Wh

|D−hk (ζ2Dh
ku)|2d~x ,

for a set Wh so that

0 < |h| < 1
2
dist(Wh, ∂U).

(Using Wh because of the shift on ζ.)

We can now apply Theorem 5.8.3 (i) to see that∫
U
|v |2d~x =

∫
Wh

|D−hk (ζ2Dh
ku)|2d~x

≤C4

∫
U
|D(ζ2Dh

ku)|2d~x .



Proof of Theorem 6.3.1

Using spt(ζ) ⊂W and the product rule, we can write

C4

∫
U
|D(ζ2Dh

ku)|2d~x =C4

∫
W
|(Dζ2)Dh

ku + ζ2DDh
ku|2d~x

≤C5

∫
W
|Dh

ku|2 + ζ2|Dh
kDu|2d~x

≤C6

∫
U
|Du|2 + ζ2|Dh

kDu|2d~x .

In obtaining the second summand in the second line, a factor of ζ2

was incorporated into C5, and we observed that D and Dh
k

commute. In obtaining the first summand in the third line, we used
Theorem 5.8.3 (i).



Proof of Theorem 6.3.1

To recap, we now have

|B| ≤ 3C3ε

∫
U
|v |2d~x +Kε

∫
U
|f |2 + |Du|2 + |u|2d~x ,

and ∫
U
|v |2d~x ≤ C6

∫
U
|Du|2 + ζ2|Dh

kDu|2d~x .

Combining, we see that for some constants C7 and K̃ε, we can write

|B| ≤ C7ε

∫
U
ζ2|Dh

kDu|2d~x + K̃ε
∫
U
|f |2 + |Du|2 + |u|2d~x .

We choose ε small enough so that C7ε ≤ θ
4 , giving

|B| ≤ θ

4

∫
U
ζ2|Dh

kDu|2d~x + K̃ε
∫
U
|f |2 + |Du|2 + |u|2d~x .



Proof of Theorem 6.3.1

6. Recalling that A = B and

A ≥ θ

2

∫
U
ζ2|Dh

kDu|2d~x − K̃ε

∫
U
|Du|2d~x

we now have

0 =A− B ≥ A− |B|

≥ θ
4

∫
U
ζ2|Dh

kDu|2d~x −Kε

∫
U
|f |2 + |Du|2 + |u|2d~x .

Turning this around, we see that∫
U
ζ2|Dh

kDu|2d~x ≤ C8

∫
U
|f |2 + |Du|2 + |u|2d~x .

Since ζ ≡ 1 on V , we have∫
V
|Dh

kDu|2d~x ≤ C8

∫
U
|f |2 + |Du|2 + |u|2d~x .



Proof of Theorem 6.3.1

This is true for all 0 < |h| < 1
4dist(V , ∂U). Noting that we have an

estimate of this form for each k , we can conclude from (a slight
restatement of) Theorem 5.8.3 (ii) that uxj ∈ H1(V ) for each
j ∈ {1, 2, . . . , n}, and

‖D2u‖2L2(V ) ≤ C9

∫
U
|f |2 + |Du|2 + |u|2d~x .

Since V ⊂⊂ U is arbitrary, we can conclude that u ∈ H2
loc(U) and

‖u‖H2(V ) ≤ C10(‖f ‖L2(U) + ‖u‖H1(U)).

7. Last, we need to show that on the right-hand side of this final
inequality, we can replace ‖u‖H1(U) with ‖u‖L2(U).



Proof of Theorem 6.3.1

Recalling that V ⊂⊂W ⊂⊂ U, we introduce a new open set Ṽ so
that V ⊂⊂ Ṽ ⊂⊂W . Proceeding exactly as in Steps 1-6 with V ,
Ṽ , W respectively replacing the roles of V , W , U, we immediately
arrive at the inequality

‖u‖H2(V ) ≤ C11(‖f ‖L2(W ) + ‖u‖H1(W )).

Finally, we introduce one last open set W̃ so that W ⊂⊂ W̃ ⊂⊂ U,
and we take ζ ∈ C∞c (Rn) to be a new cut-off function satisfying

ζ(~x) =


1 ~x ∈W

∈ [0, 1] ~x ∈ W̃ \W
0 ~x ∈ Rn\W̃ .



Proof of Theorem 6.3.1

We now return in the proof all the way to the end of Step 3, when
we wrote the relation

n∑
i ,j=1

∫
U
aijuxi vxjd~x = (f̃ , v) ∀ v ∈ H1

0 (U).

We’ll check in the homework that if we set v = ζ2u and proceed
similarly as above, we obtain the inequality∫

W
|Du|2d~x ≤ C12(‖f ‖2L2(U) + ‖u‖2L2(U)),

so that
‖u‖H1(W ) ≤ C13(‖f ‖L2(U) + ‖u‖L2(U)),

and this gives the inequality stated in the theorem. �


