Second Order Elliptic PDE: Interior H^2 Regularity

MATH 612, Texas A&M University

Spring 2020

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Overview

Our next goal is to determine conditions under which our weak solutions $u \in H_0^1(U)$ (or $u \in H^1(U)$ for inhomogeneous boundary conditions) have additional regularity.

We recall that Reg $(H^1) = 1 - \frac{n}{2}$, so for $n \ge 3$ we're starting with negative regularity. If we want classical solutions, we've got a long way to go.

Let's start with some formal considerations to get the ideas in mind. Suppose $u \in H^1(\mathbb{R})$ is a weak solution to Poisson's equation

$$-\Delta u = f$$
, in \mathbb{R}^n

for some $f \in L^2(\mathbb{R}^n)$. Although u is a weak solution, the strong formulation suggests that we might have $\Delta u \in L^2(\mathbb{R}^n)$. Could we use this to show that in fact $u \in H^2(\mathbb{R}^n)$?

Overview

Formally, we can compute

$$\begin{split} \|f\|_{L^{2}(\mathbb{R}^{n})}^{2} &= \|\Delta u\|_{L^{2}(U)}^{2} = \int_{\mathbb{R}^{n}} \sum_{i=1}^{n} u_{x_{i}x_{i}} \sum_{j=1}^{n} u_{x_{j}x_{j}} d\vec{x} \\ &= \int_{\mathbb{R}^{n}} \sum_{i,j=1}^{n} u_{x_{i}x_{j}}^{2} d\vec{x}. \end{split}$$

We see that $u_{x_ix_j} \in L^2(\mathbb{R}^n)$ for all $i, j \in \{1, 2, ..., n\}$, so if $u \in H^1(\mathbb{R}^n)$ then $u \in H^2(\mathbb{R}^n)$.

Next, suppose that $f \in H^1(\mathbb{R}^n)$. Then we can push this idea further by setting $\tilde{u} = u_{x_i}$, so that

$$-\Delta \tilde{u} = f_{x_i} \in L^2(\mathbb{R}^n).$$

We can conclude as before that $\tilde{u} \in H^2(U)$, and if we do this for all $i \in \{1, 2, ..., n\}$, we can conclude that $u \in H^3(\mathbb{R}^n)$.

Overview

This type of argument is sometimes referred to as "bootstrapping." I.e., lifting yourself up by your own bootstraps.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

To what extent can we make these ideas rigorous?

Interior H^2 Regularity

Theorem 6.3.1. Suppose $U \subset \mathbb{R}^n$ is open and bounded, $a^{ij} \in C^1(U)$, b^i , $c \in L^{\infty}(U)$ ($\forall i, j \in \{1, 2, ..., n\}$), and L is uniformly elliptic. Also, suppose $f \in L^2(U)$, and $u \in H^1(U)$ (not necessarily $H^1_0(U)$) is a weak solution of

$$Lu = f$$
 in U .

Then $u \in H^2_{loc}(U)$, and for each $V \subset \subset U$, there exists a constant C, depending only on V, U, and the coefficients of L, so that

$$||u||_{H^2(V)} \leq C(||f||_{L^2(U)} + ||u||_{L^2(U)}).$$

Interior H^2 Regularity

Note. Recall that to say that $u \in H^1(U)$ is a weak solution of

$$Lu = f$$
 in U ,

means that

$$B[u,v] = (f,v) \quad \forall v \in H_0^1(U).$$

Under the assumptions of Theorem 6.3.1, we have additionally that $u \in H^2_{loc}(U)$.

For any $\phi \in C^\infty_c(U) \subset H^1_0(U)$, we can compute

$$B[u,\phi] = \int_{U} \left\{ \sum_{i,j=1}^{n} a^{ij} u_{x_{i}} \phi_{x_{j}} + \sum_{i=1}^{n} b^{i} u_{x_{i}} \phi + cu\phi \right\} d\vec{x}$$

$$\stackrel{\text{parts}}{=} \int_{U} \left\{ -\sum_{i,j=1}^{n} (a^{ij} u_{x_{i}})_{x_{j}} + \sum_{i=1}^{n} b^{i} u_{x_{i}} + cu \right\} \phi d\vec{x}$$

$$= (Lu,\phi).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Interior H^2 Regularity

On the other hand, since $C_c^{\infty}(U) \subset H_0^1(U)$, we have

$$B[u,\phi] = (f,\phi).$$

Equating the two inner products, we see that

$$(Lu-f,\phi)=0$$

for all $\phi \in C_c^{\infty}(U)$, and we can conclude from a class lemma that Lu = f for a.e. $\vec{x} \in U$.

ション ふゆ く 山 マ チャット しょうくしゃ

I.e., Theorem 6.3.1 implies that our solution u solves the strong-form equation Lu = f in a pointwise sense (a.e.).

0. Since the proof is long, let's be clear at the outset about the strategy. Recall that $D_k^h u$ denotes the k^{th} difference quotient of size h,

$$D_k^h u(\vec{x}) = rac{u(\vec{x}+h\hat{e}_k)-u(\vec{x})}{h}.$$

We'll show that for any $u \in H^1(U)$ as described in the theorem statement, and any fixed $V \subset U$, there exists a constant \tilde{C} , depending only on U, V, and the coefficients of L, so that

$$\|D_k^h Du\|_{L^2(V)} \leq \tilde{C}(\|f\|_{L^2(U)} + \|u\|_{L^2(U)})$$

ション ふゆ く 山 マ チャット しょうくしゃ

for all |h| sufficiently small.

Using Theorem 5.8.3 (ii), we'll be able to conclude that there exists a constant $\tilde{\tilde{C}}$, depending only on U, V, and the coefficients of L, so that

$$\|D^2u\|_{L^2(V)} \leq \tilde{\tilde{C}}(\|f\|_{L^2(U)} + \|u\|_{L^2(U)}),$$

giving the estimate we're looking for on the second derivative. (First derivative estimates are easier.) The new constant $\tilde{\tilde{C}}$ arises because we've combined estimates in the latter inequality for all second order derivatives.

Here, recall that

$$|D^2u| := (\sum_{|\alpha|=2} |D^{\alpha}u|^2)^{1/2}.$$

ション ふゆ く 山 マ チャット しょうくしゃ

1. Fix $V \subset U$ and take an open set W so that $V \subset W \subset U$. Let $\zeta \in C_c^{\infty}(\mathbb{R}^n)$ denote a cut-off function so that

$$\zeta = \begin{cases} 1 & \vec{x} \in V \\ \in [0,1] & \vec{x} \in W \setminus V \\ 0 & \vec{x} \in \mathbb{R}^n \setminus W \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

See figure on the next slide.

2. Since $u \in H^1(U)$ is a weak solution of Lu = f, we have

$$\int_{U} \Big\{ \sum_{i,j=1}^{n} a^{ij} u_{x_{i}} v_{x_{j}} + \sum_{i=1}^{n} b^{i} u_{x_{i}} v + cuv \Big\} d\vec{x} = \int_{U} fv d\vec{x}$$

for all $v \in H_0^1(U)$. We can rearrange this relation as

$$\int_{U} \sum_{i,j=1}^{n} a^{ij} u_{x_i} v_{x_j} d\vec{x} = \int_{U} \left\{ f - \sum_{i=1}^{n} b^i u_{x_i} - cu \right\} v d\vec{x}.$$

Notice that since $u \in H^1(U)$ and $f \in L^2(U)$, the function

$$\tilde{f}:=f-\sum_{i=1}^n b^i u_{x_i}-cu$$

ション ふゆ アメリア メリア しょうくの

satisfies $\tilde{f} \in L^2(U)$.

I.e., for $\widetilde{f} \in L^2(U)$,

$$\int_U \sum_{i,j=1}^n a^{ij} u_{x_i} v_{x_j} d\vec{x} = (\tilde{f}, v)$$

for all $v \in H_0^1(U)$.

The key point in the proof consists of choosing v appropriately. Thinking formally, we would like to choose $v = u_{x_k x_k}$, integrate by parts similarly as in the overview and then finish off the proof by using uniform ellipticity.

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 二目 - 釣�?

3. As specified on our figure, we let

$$egin{aligned} 0 < |h| < rac{1}{4} ext{dist}(V, \partial U) \ 0 < |h| < rac{1}{3} ext{dist}(W, \partial U). \end{aligned}$$

Here, we're saving some room to insert another set with a factor of $\frac{1}{2}$.

For
$$k \in \{1, 2, ..., n\}$$
, we set
 $v(\vec{x}) := -D_k^{-h}(\zeta(\vec{x})^2 D_k^h u(\vec{x})).$

Notice that since $\operatorname{spt}(\zeta) \subset W$, |h| is small enough so that $v(\vec{x})$ is 0 for \vec{x} close enough to ∂U . Otherwise, for each fixed h, with |h| > 0, $v(\vec{x})$ is a linear combination of $H^1(U)$ functions, so $v \in H^1_0(U)$.

Also, aside from $\zeta(\vec{x})^2$, which is identially 1 on V, this is a standard second order finite difference approximation of $-u_{x_k x_k}$.

We now substitute v into

$$\int_U \sum_{i,j=1}^n a^{ij} u_{x_i} v_{x_j} d\vec{x} = (\tilde{f}, v).$$

In the next steps of the proof, we'll denote the resulting left-hand side by A and the resulting right-hand side by B.

4. In this step, we'll develop our estimate on A. First, fix any $\tilde{U} \subset \subset U$ and $0 < |h| < \operatorname{dist}(\tilde{U}, \partial U)$.

Claim 1. We can integrate by parts in the following way,

$$\int_U u(\vec{x}) D_k^{-h} \phi(\vec{x}) d\vec{x} = -\int_U \phi(\vec{x}) D_k^h u(\vec{x}) d\vec{x}$$

for all $\phi \in C_c^{\infty}(\tilde{U})$. Moreover, this is true for $\phi(\vec{x}) = \zeta(\vec{x})^2 D_k^h u(\vec{x})$.

To see this, we write

$$\int_{U} u(\vec{x}) D_k^{-h} \phi(\vec{x}) d\vec{x} = \int_{U} u(\vec{x}) \frac{\phi(\vec{x} - h\hat{e}_k) - \phi(\vec{x})}{-h} d\vec{x}$$
$$= -\int_{\operatorname{spt}(\phi(\cdot - h\hat{e}_k))} u(\vec{x}) \frac{\phi(\vec{x} - h\hat{e}_k)}{h} d\vec{x} + \int_{\tilde{U}} \frac{u(\vec{x})\phi(\vec{x})}{h} d\vec{x}.$$

Set $\vec{y} = \vec{x} - h\hat{e}_k$ in the first integral to get

$$-\int_{\tilde{U}} u(\vec{y} + h\hat{e}_k) \frac{\phi(\vec{y})}{h} d\vec{y} + \int_{\tilde{U}} \frac{u(\vec{x})\phi(\vec{x})}{h} d\vec{x}$$
$$= -\int_{\tilde{U}} \phi(\vec{x}) D_k^h u(\vec{x}) d\vec{x} = -\int_{U} \phi(\vec{x}) D_k^h u(\vec{x}) d\vec{x}.$$

Precisely the same calculation works with $\phi(\vec{x}) = \zeta(\vec{x})^2 D_k^h u(\vec{x})$, with $W \subset \subset \tilde{U} \subset \subset U$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Claim 2. We have the product rule

$$D_k^h(vw) = v^h D_k^h w + w D_k^h v,$$

for any u and v defined a.e. where evaluated. Here, $v^h(\vec{x}) := v(\vec{x} + h\hat{e}_k).$

For this one, we compute

$$D_{k}^{h}(vw) = \frac{v(\vec{x} + h\hat{e}_{k})w(\vec{x} + h\hat{e}_{k}) - v(\vec{x})w(\vec{x})}{h}$$

= $\frac{v(\vec{x} + h\hat{e}_{k})w(\vec{x} + h\hat{e}_{k}) - v(\vec{x} + h\hat{e}_{k})w(\vec{x})}{h}$
+ $\frac{v(\vec{x} + h\hat{e}_{k})w(\vec{x}) - v(\vec{x})w(\vec{x})}{h}$
= $v^{h}(\vec{x})D_{k}^{h}w(\vec{x}) + w(\vec{x})D_{k}^{h}v(\vec{x}).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Now, for $v = -D_k^{-h}(\zeta^2 D_k^h u)$, we use Claims 1 and 2 to compute

$$\begin{split} A &= \sum_{i,j=1}^{n} \int_{U} a^{ij} u_{x_{i}} v_{x_{j}} d\vec{x} = -\sum_{i,j=1}^{n} \int_{U} a^{ij} u_{x_{i}} \Big\{ D_{k}^{-h} (\zeta^{2} D_{k}^{h} u) \Big\}_{x_{j}} d\vec{x} \\ \stackrel{\text{claim1}}{=} \sum_{i,j=1}^{n} \int_{U} D_{k}^{h} (a^{ij} u_{x_{i}}) (\zeta^{2} D_{k}^{h} u)_{x_{j}} d\vec{x} \\ \stackrel{\text{claim2}}{=} \sum_{i,j=1}^{n} \int_{U} \Big\{ a^{ij, h} (D_{k}^{h} u_{x_{i}}) + u_{x_{i}} (D_{k}^{h} a^{ij}) \Big\} (\zeta^{2} D_{k}^{h} u_{x_{j}} + 2\zeta \zeta_{x_{j}} D_{k}^{h} u) d\vec{x} \\ &= \sum_{i,j=1}^{n} \int_{U} a^{ij, h} (D_{k}^{h} u_{x_{i}}) (\zeta^{2} D_{k}^{h} u_{x_{j}}) d\vec{x} \\ &+ \sum_{i,j=1}^{n} \int_{U} \Big\{ a^{ij, h} (D_{k}^{h} u_{x_{i}}) (2\zeta \zeta_{x_{j}} D_{k}^{h} u) + u_{x_{i}} (D_{k}^{h} a^{ij}) (\zeta^{2} D_{k}^{h} u_{x_{j}}) \\ &+ u_{x_{i}} (D_{k}^{h} a^{ij}) 2\zeta \zeta_{x_{j}} (D_{k}^{h} u) \Big\} d\vec{x}. \end{split}$$

In this last expression, we'll set

$$A_{1} = \sum_{i,j=1}^{n} \int_{U} a^{ij,h} (D_{k}^{h} u_{x_{i}}) (\zeta^{2} D_{k}^{h} u_{x_{j}}) d\vec{x},$$

and we'll denote the remaining terms A_2 .

By uniform ellipticity, we see that

$$A_1 \geq \theta \int_U \zeta^2 |D_k^h D u|^2 d\vec{x},$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

for some $\theta > 0$.

For A_2 , we can write

$$\begin{aligned} |A_{2}| &\leq \sum_{i,j=1}^{n} \int_{U} \left\{ |a^{ij,h}| |D_{k}^{h}u_{x_{i}}| 2\zeta |\zeta_{x_{j}}| |D_{k}^{h}u| + |u_{x_{i}}| |D_{k}^{h}a^{ij}| \zeta^{2} |D_{k}^{h}u_{x_{j}}| \right. \\ &+ |u_{x_{i}}| |D_{k}^{h}a^{ij}| 2\zeta |\zeta_{x_{j}}| |D_{k}^{h}u| \Big\} d\vec{x}. \\ &\leq C_{1} \int_{U} \left\{ \zeta |D_{k}^{h}Du| |D_{k}^{h}u| + \zeta |Du| |D_{k}^{h}Du| + \zeta |Du| |D_{k}^{h}u| \right\} d\vec{x}. \end{aligned}$$

for some constant C_1 . Here, the terms shaded red are bounded and incorporated into the constant C_1 .

We now want to estimate this final expression in such a way that the contribution from the terms in blue is small. We'll use the ϵ -Young's inequality

$$ab \leq \epsilon a^2 + rac{1}{4\epsilon}b^2.$$

We get

$$\begin{split} &(\zeta |D_k^h Du|)|D_k^h u| \leq \epsilon \zeta^2 |D_k^h Du|^2 + \frac{1}{4\epsilon} |D_k^h u|^2 \\ &(\zeta |D_k^h Du|)|Du| \leq \epsilon \zeta^2 |D_k^h Du|^2 + \frac{1}{4\epsilon} |Du|^2. \end{split}$$

We'll also use the usual Young's inequality to write

$$\zeta |Du||D_k^h u| \leq \zeta \Big(\frac{1}{2} |Du|^2 + \frac{1}{2} |D_k^h u|^2 \Big).$$

Combining these observations, we obtain the inequality

$$|A_2| \leq 2C_1 \epsilon \int_U \zeta^2 |D_k^h Du|^2 d\vec{x} + K_\epsilon \int_W |D_k^h u|^2 + |Du|^2 d\vec{x},$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

for some constant K_{ϵ} that grows as ϵ is reduced.

In both integrals, the integration is only over W due to the support of ζ . Since ζ has been incorporated into the constant K_{ϵ} for the second integral, this has been made explicit.

We now choose $\epsilon > 0$ small enough so that $2C_1 \epsilon \leq \frac{\theta}{2}$. Then

$$|A_2| \leq \frac{\theta}{2} \int_U \zeta^2 |D_k^h Du|^2 d\vec{x} + K_\epsilon \int_W |D_k^h u|^2 + |Du|^2 d\vec{x}.$$

From Theorem 5.8.3 (i), we know that since $u \in H^1(U)$ and $W \subset U$, there exists a constant C_2 , depending only on W and U, so that

$$\|D_k^h u\|_{L^2(W)} \le C_2 \|D u\|_{L^2(U)}$$

for all $0 < |h| < \frac{1}{3} \text{dist}(W, \partial U)$. (In the statement of Theorem 5.8.3, $\frac{1}{2}$ is used in place of $\frac{1}{3}$.)

This allows us to write

$$|A_2| \leq rac{ heta}{2} \int_U \zeta^2 |D_k^h Du|^2 d\vec{x} + ilde{K}_\epsilon \int_U |Du|^2 d\vec{x}.$$

Combining these observations, we see that

$$\begin{split} A &= A_1 + A_2 \ge A_1 - |A_2| \\ &\geq \theta \int_U \zeta^2 |D_k^h Du|^2 d\vec{x} - \frac{\theta}{2} \int_U \zeta^2 |D_k^h Du|^2 d\vec{x} - \tilde{K}_\epsilon \int_U |Du|^2 d\vec{x} \\ &= \frac{\theta}{2} \int_U \zeta^2 |D_k^h Du|^2 d\vec{x} - \tilde{K}_\epsilon \int_U |Du|^2 d\vec{x}. \end{split}$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

5. In this step, we'll develop our estimate on $B = (\tilde{f}, v)$, recalling that $\tilde{f} = f - \sum_{i=1}^{n} b^{i} u_{x_{i}} - cu$ and $v(\vec{x}) := -D_{k}^{-h}(\zeta(\vec{x})^{2}D_{k}^{h}u(\vec{x}))$. We have

$$\begin{split} |B| &= |(\tilde{f}, v)| = |(f - \sum_{i=1}^{n} b^{i} u_{x_{i}} - cu, v)| \\ &\leq C_{3} \int_{U} \left(|f| + |Du| + |u| \right) |v| d\vec{x} \\ &\stackrel{\epsilon - \mathrm{Young's}}{\leq} 3C_{3} \epsilon \int_{U} |v|^{2} d\vec{x} + \mathcal{K}_{\epsilon} \int_{U} |f|^{2} + |Du|^{2} + |u|^{2} d\vec{x}. \end{split}$$

Here,

$$\int_U |v|^2 d\vec{x} = \int_U |D_k^{-h}(\zeta^2 D_k^h u)|^2 d\vec{x}.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Similarly as with our discussion for v, we have $\zeta^2 D_k^h u \in H_0^1(U)$. Also, since $\operatorname{spt}(\zeta) \subset \overline{W}$, we can write

$$\int_{U} |D_{k}^{-h}(\zeta^{2}D_{k}^{h}u)|^{2}d\vec{x} = \int_{W_{h}} |D_{k}^{-h}(\zeta^{2}D_{k}^{h}u)|^{2}d\vec{x},$$

for a set W_h so that

$$0 < |h| < \frac{1}{2} \operatorname{dist}(W_h, \partial U).$$

(Using W_h because of the shift on ζ .)

We can now apply Theorem 5.8.3 (i) to see that

$$\int_{U} |v|^2 d\vec{x} = \int_{W_h} |D_k^{-h}(\zeta^2 D_k^h u)|^2 d\vec{x}$$
$$\leq C_4 \int_{U} |D(\zeta^2 D_k^h u)|^2 d\vec{x}.$$

ション ふゆ アメリア メリア しょうくしゃ

Using $\operatorname{spt}(\zeta) \subset \overline{W}$ and the product rule, we can write $C_4 \int_U |D(\zeta^2 D_k^h u)|^2 d\vec{x} = C_4 \int_W |(D\zeta^2) D_k^h u + \zeta^2 D D_k^h u|^2 d\vec{x}$ $\leq C_5 \int_W |D_k^h u|^2 + \zeta^2 |D_k^h D u|^2 d\vec{x}$ $\leq C_6 \int_U |Du|^2 + \zeta^2 |D_k^h D u|^2 d\vec{x}.$

In obtaining the second summand in the second line, a factor of ζ^2 was incorporated into C_5 , and we observed that D and D_k^h commute. In obtaining the first summand in the third line, we used Theorem 5.8.3 (i).

To recap, we now have

$$|B| \leq 3C_3\epsilon \int_U |v|^2 d\vec{x} + \mathcal{K}_\epsilon \int_U |f|^2 + |Du|^2 + |u|^2 d\vec{x},$$

and

$$\int_U |v|^2 d\vec{x} \leq C_6 \int_U |Du|^2 + \zeta^2 |D_k^h Du|^2 d\vec{x}.$$

Combining, we see that for some constants C_7 and $\tilde{\mathcal{K}}_{\epsilon}$, we can write

$$|B| \leq C_7 \epsilon \int_U \zeta^2 |D_k^h Du|^2 d\vec{x} + \tilde{\mathcal{K}}_\epsilon \int_U |f|^2 + |Du|^2 + |u|^2 d\vec{x}.$$

We choose ϵ small enough so that $C_7 \epsilon \leq \frac{\theta}{4}$, giving

$$|B| \leq \frac{\theta}{4} \int_U \zeta^2 |D_k^h Du|^2 d\vec{x} + \tilde{\mathcal{K}}_\epsilon \int_U |f|^2 + |Du|^2 + |u|^2 d\vec{x}.$$

ション ふゆ アメリア メリア しょうくしゃ

6. Recalling that A = B and

$$A \geq \frac{\theta}{2} \int_{U} \zeta^{2} |D_{k}^{h} Du|^{2} d\vec{x} - \tilde{K}_{\epsilon} \int_{U} |Du|^{2} d\vec{x}$$

we now have

$$0 = A - B \ge A - |B|$$

$$\ge \frac{\theta}{4} \int_U \zeta^2 |D_k^h Du|^2 d\vec{x} - \mathbf{K}_\epsilon \int_U |f|^2 + |Du|^2 + |u|^2 d\vec{x}.$$

Turning this around, we see that

$$\int_{U} \zeta^{2} |D_{k}^{h} Du|^{2} d\vec{x} \leq C_{8} \int_{U} |f|^{2} + |Du|^{2} + |u|^{2} d\vec{x}.$$

Since $\zeta \equiv 1$ on *V*, we have

$$\int_{V} |D_{k}^{h} Du|^{2} d\vec{x} \leq C_{8} \int_{U} |f|^{2} + |Du|^{2} + |u|^{2} d\vec{x}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

This is true for all $0 < |h| < \frac{1}{4} \text{dist}(V, \partial U)$. Noting that we have an estimate of this form for each k, we can conclude from (a slight restatement of) Theorem 5.8.3 (ii) that $u_{x_j} \in H^1(V)$ for each $j \in \{1, 2, ..., n\}$, and

$$\|D^2 u\|_{L^2(V)}^2 \leq C_9 \int_U |f|^2 + |Du|^2 + |u|^2 d\vec{x}.$$

Since $V \subset U$ is arbitrary, we can conclude that $u \in H^2_{loc}(U)$ and

$$||u||_{H^2(V)} \leq C_{10}(||f||_{L^2(U)} + ||u||_{H^1(U)}).$$

(日) (伊) (日) (日) (日) (0) (0)

7. Last, we need to show that on the right-hand side of this final inequality, we can replace $||u||_{H^1(U)}$ with $||u||_{L^2(U)}$.

Recalling that $V \subset W \subset U$, we introduce a new open set \tilde{V} so that $V \subset \tilde{V} \subset W$. Proceeding exactly as in Steps 1-6 with V, \tilde{V} , W respectively replacing the roles of V, W, U, we immediately arrive at the inequality

$$||u||_{H^2(V)} \leq C_{11}(||f||_{L^2(W)} + ||u||_{H^1(W)}).$$

Finally, we introduce one last open set \tilde{W} so that $W \subset \subset \tilde{W} \subset \subset U$, and we take $\zeta \in C_c^{\infty}(\mathbb{R}^n)$ to be a new cut-off function satisfying

$$\zeta(\vec{x}) = \begin{cases} 1 & \vec{x} \in W \\ \in [0,1] & \vec{x} \in \tilde{W} \setminus W \\ 0 & \vec{x} \in \mathbb{R}^n \setminus \tilde{W} \end{cases}$$

ション ふゆ く 山 マ チャット しょうくしゃ

We now return in the proof all the way to the end of Step 3, when we wrote the relation

$$\sum_{i,j=1}^n \int_U a^{ij} u_{x_i} v_{x_j} d\vec{x} = (\tilde{f}, v) \quad \forall v \in H^1_0(U).$$

We'll check in the homework that if we set $v = \zeta^2 u$ and proceed similarly as above, we obtain the inequality

$$\int_{W} |Du|^2 d\vec{x} \leq C_{12} (\|f\|_{L^2(U)}^2 + \|u\|_{L^2(U)}^2),$$

so that

$$||u||_{H^{1}(W)} \leq C_{13}(||f||_{L^{2}(U)} + ||u||_{L^{2}(U)}),$$

ション ふゆ アメリア メリア しょうくしゃ

and this gives the inequality stated in the theorem.