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Weak Derivatives

Definition. We say that a function u € L*(0, T; X) is weakly
differentiable on (0, T) if there exists a function v € L}(0, T; X) so
that
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for all ¢ € C2°(0, T;R). We say that v is the weak derivative of u
and write v/ = v.
Notes. 1. The ¢ are our usual test functions, taking values in R.

2. We're following the convention Evans adopts and using
u € LY0, T; X), but we could also use u € L} (0, T; X).



Weak Derivatives

3. Suppose X and Y are Banach spaces with X continuously
embedded in Y, and denote by / : X — Y the identity map. In
addition, suppose v € L(0, T; X) and (/u)’ € L}(0, T; Y). Then
according to the note following Theorem A.E.8, we can write

T

([ Cueyo(e)de) - JRCOZCEE| (Y (D)o(t)dt.

If we identify u with /u, we can view (/u)" as the Y-valued
derivative of the X-valued function u.



The Sobolev Space WP(0, T; X)

Definition. We denote by W1P(0, T; X) the space of all functions
u € LP(0, T; X) so that u exists in the weak sense and belongs to
LP(0, T; X). We equip WLP(0, T; X) with the norms

T p , p 1/p
lullwero.r = (| ()l + I (0)lkde) ™ (1< p <o)
lullwasio,x) =ess sup([lu(®)lx + [4/(8)lx)  (p = o0).

0<t<T

We will use the notation H*(0, T; X) = W12(0, T; X).

Theorem 7. For any 1 < p < o0, if X is a Banach space, then
WP(0, T; X) is a Banach space.



Sobolev Embedding and Calculus

Theorem 5.9.2. Let u € WP(0, T; X) for some 1 < p < oo.
Then:

(i) u e C([0, T]; X) (for some version of u)

(ii)Forall 0<s<t<T

t
u(t) = u(s) + / o (r)dr.
s
(iii) There exists a constant C, depending only on T, so that
H””C([O,T]:X) < C”””WLP(O,T;X)-

Note. Here, for the variable t, we have n = 1, so formally,
Reg (W1P(0, T; X)) =1~ % >0foralll<p<oo.



Proof of Theorem 5.9.2

0. Two familiar observations will come up during this proof in a
new setting. First, if u € LP(0, T; X), then since (0, T) is bounded,
we can conclude that v € L9(0, T; X) for all 1 < g < p. Second, if

u € LY0, T; X) then
t
/ u(s)ds
0

is continuous as a function of t.

1. We let n(t) denote the usual real-valued mollifer, and set
u(t) =nexu(t) in(e, T —e).
We know from Theorem 6 (i) that u® € C*®(e, T — ¢€; X), and

u(t)=nlxu(t) in(e, T —e).



Proof of Theorem 5.9.2

Claim. uv¢'(t) =ne* u'(t) forall t € (e, T —¢).

We did this calculation in the proof of Theorem 5.3.1, but there's
no harm in doing it in this new setting as well. We write
+oo

6 () =, % u(t) = / 7Lt — 7)u(r)dr

+oo
= —/ Orne(t — m)u(7)dT.
For t € (¢, T —€), ne(t — 7) is 0 whenever u is undefined, but as
Evans notes, we can extend u by 0 to R if we like.

Here, for each t € (¢, T —¢€), n(t —-) € C(0, T;R), so in
particular 7¢(t — 7) is a valid test function on (0, T).



Proof of Theorem 5.9.2

Since u is weakly differentiable on (0, T), we can conclude that for
each t € (¢, T —¢),

“+00
—/ Dot — 7)u / one(t — 7)u(r)dr

_z/OTne(t—T) @dr = [ e -

and this is the claim.
According to Theorem 6 (ii), we know that as ¢ — 0
u(t) > u(t) in X forae te(0,T),
and, since u¢'(t) = n * U/ (t), with v' € LP(0, T; X), we know that

u =" in L (0, T; X).

loc



Proof of Theorem 5.9.2

It follows from this latter convergence that

vt = in L (0, T; X).
Notice that if p = co, then we don't have convergence in
L2 (0, T; X), but we still have convergence in LL (0, T; X).

loc

According to Theorem 2, for any 0 < s < t < T we can write

u(t) = u(s) + /st u'(T)dr.

Using the pointwise convergence of u(t) and the LL (0, T; X)
convergence of u¢’, we can conclude that fora.e. 0 <s<t< T

we have

Since the integral is continuous in both s and t, we see that in fact
u is continuous on [0, T]. This gives both (i) and (ii).



Proof of Theorem 5.9.2

2. For Item (iii), we can use Theorem A.E.8 to write
t
u(s) +/ U (t)dr
s X
t
i+ [ 1) xr )
s

We now integrate this relation with respect to s to see that
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Dividing by T, we see that there exists a constant C so that

u<c/ Ollx + 16/ (£)]| x.

lu(t)llx <




Proof of Theorem 5.9.2

The right-hand side does not depend on t, so we can take the
maximum over t € [0, T] to see that

.
lullcqo,mx) < C/O lu()llx + [[u' ()] xdt.

Since this integration is over a bounded domain, we can use
Holder's inequality in the usual way to get the claimed estimate. [J



Sobolev Embedding and More Calculus

Notes. 1. While studying second order parabolic PDE, we will

often work with functions u € L2(0, T; H3(U)) for which
u' € L2(0, T; H~1(U)). Intuitively, we can understand this by
considering the heat equation

U = Au.

In general, we expect the Laplacian to reduce the regularity of a
function space by 2, so if u € H™(U), then Au € H™2(U).

Correspondingly, if u: [0, T] — H™(U) is a solution of the heat
equation, we expect v’ : [0, T] — H™2(U). The case described
above corresponds (very formally!) with m = 1.



Sobolev Embedding and More Calculus

2. In the setting of Note 1, we should keep in mind that we
continue to have u € L1(0, T; H3(U)) and u' € LY(0, T; H3(U)), as
specified in our definition of weak differentiability.

We recall that H}(U) is continuously embedded in H=1(U), and
use the third note following our definition of weak derivatives to
view the weak derivative of u as (lu)’ € L(0, T; H=1(U)).

When we write u € L2(0, T; H3(U)), we mean that this is the case
in addition to u € L1(0, T; H}(U)) , and likewise when we write

u' € L2(0, T; H(U)), we mean that in addition to

(lu) € LY0, T; H~Y(U)) we have (lu) € L2(0, T; H~(U)).



Sobolev Embedding and More Calculus

Theorem 5.9.3. Suppose u € L2(0, T; H}(U)) and
u' € L2(0, T; H~1(U)). Then:

(i) u € C([0, T]; L2(U)) (for some version of u)

ii) The mapping t — ||u(t)||;2(yy is absolutely continuous, and
(v)

d
EHU(t)H%z(U) = 2(/(t), u(t)),
forae. 0<t<T.

(iii) There exists a constant C, depending only on T, so that

lull (o, m:e2(u)) < C(HUHLz(o,T;Hg(U)) + HU,HLZ(O,T;H—l(U))>-



Proof of Theorem 5.9.3

1. First, we extend u (by 0) to a slightly larger interval
[0, T + 0], 0 >0, so that we'll be able to evaluate mollifications
of u on the full set [0, T].

For 0 <€, < o, we set u¢ = n. * u and u® = s« u. Then, for any
te(0,T)

G = POl = 55 [ (0= ()

_ ut _u6 ue! _u6/ 7
- /U (W () — P (8))(u(t) — /(1))

=2(u'(t) — u”'(2), u(t) — (1)) 12(u).

where we differentiate under the integral in the usual way with
difference quotients and LDCT. Notice that in this last calculation,

ue!(t) = (nl + u)(t) € Hy(U).



Proof of Theorem 5.9.3

Integrating this relation, we obtain
1u(e) = w* ()22 = 16(5) — ¥ (5)]Za(o
+2 /t(ue'(T) — (1), u(1) = (7)) zydT, (¥
forall 0 <s,t < T. From Item (iii) of Theorem 5.9.1,
(u°'(r) — o (7), 6 (7) — ()i
= (u'(7) = u’'(7), u(7) = W’ (7)),

where for the right-hand side we mean the action of
u'(t) — u'(7), viewed as an element of H=1(U), on
ue(t) — u0(7) € HA(U).

If we compute the supremum of both sides of (*) over t € [0, T],
we obtain the inequality on the next slide.



Proof of Theorem 5.9.3

We can now compute

sup_[[u(2) — u(8) 32 < 1u(s) — 0 ()32
0<t<T

)
2 / 1a(r) — &) -0 [6(7) — 67 g
T
< " (s) — ¥ (5)| o + /0 1(7) = w5 (7) By 27

]
4 / o (7)— 0(r) |2 gy 7
< luf(s) — U6(5)||%2(U)+ Ju" — U6,||i2(0,T;H*1(U))

+H|us(r) — u¥(T) ||%2(0,T;H3(U))‘



Proof of Theorem 5.9.3

l.e., we have
o = lleqoryezwy < 1u’() = o (5) 2wy
Hlu = 0" a0, r-r oy + 187 = a0 o)y

Since u € L2(0, T; H}(U)), we know from Theorem 6 (ii) that
ue(t) — u(t) in H}(U) for a.e. t € (0, T). We choose s € (0, T)
to be one of these values.

We also know from Theorem 6 (iv) that as ¢ — 0

u¢ s u in L3 (o, T + 0, H}(V))

loc

ut = in 2. (=0, T +o,HU)).

Combining these observations, we see that {u¢} is Cauchy in
C([0, T]; L?(V)), and so there is some v € C([0, T]; L2(U)) so that
u¢ — v in C([0, T]; L2(U)).



Proof of Theorem 5.9.3

Using again the observation that u(t) — u(t) in H3(U) for a.e.
t € (0, T), we see that u(t) = v(t) for a.e. t € (0, T). We can
conclude that v is a continuous version of u, giving (i).

2. For (ii), we can use the same argument as in Step 1 to see that

t
1 ()32 = () 22 + 2 / (u(r), (7)) dr,

forall 0 <s,t < T. We can take the limit as € — 0 in this
expression, noting as above that Hue(t)||%2(u) = |lu(t)[[2(vy for
ae te(0,T).

Let's check that

lim /st<u€’(7'),u€(7'))d7':/St<u’(7'),u(7')>d7'.

e—0



Proof of Theorem 5.9.3

For this, we compute

/:<U6I(T)a u(7))dT— /st<u'(7'), U(T)>d7"
/st<u€’(f), (1)) — (u¥'(7), u(7)>d7’
] [, ue) - W), urar]

<

/Hu“ 100 10°) = () 0
# [0 V@ sl e



Proof of Theorem 5.9.3

We can now apply Hélder's inequality to each of these last two
integrals. E.g., for the first, we have

:
/0 1 ()l -2 () — () sy

T . 1/2 T . 1/2
g(/o Hu'(T)Hi,,l(U)dT) (/0 Hu(r)—u(T)llﬁl(U)dT)

€ € e—0
= (|t | 120, 7:1-2(uy) 14 = ulliz(0, 711 (0y) = O-

The second is similar. We conclude that

HU(t)Hfz(U)Z\U(S)Ilfz(u)+2/s (W'(7), u(r))dr, (%)

fora.e. 0 <s,t < T, and if we take u to be its continuous version,
we must have the relation for all 0 < s,t < T. Since

(u'(1), u(t)) € L1(0, T), we can conclude that Hu(t)||%2(U) is
absolutely continuous. Upon differentiation of (**) we obtain (ii).



Proof of Theorem 5.9.3

3. For (iii) if we integrate our relation

lu(©)lBagy = 1u(s) 22 + 2 / (' (7), u(r))dr,

in s on the interval [0, T], we see that

Ty = [ 1o os+2 [ [ W) utmars
SH“H%Z(O,T;B(U))JFZ/O /s 14" (D) =2yl () vy d
< llulZ20.7.12(0) Jr2T/0THU/(T)HH—l(U)HU(T)HHl(U)C/T

0
< ulao,me2quy + T/O ' Nb-wy + ek

= llulif20, 720y + T(H“/HfZ(o,T;H )+ lullfeo,r, H1(U))>



Proof of Theorem 5.9.3

Since the right-hand side does not depend on ¢, we can compute
the maximum over t € [0, T] on both sides to see that (also
dividing by T and taking a square root)

~ 2 /112 /2
lulleqo,mie2(uy) < C(HUHLz(o,T;Hg(U)) +u |’L2(O,T;H*1(U)))
< C(H”HB(O,T;H&(U)) + HU/”LZ(O,T;H*l(U)))?

and this is the claim.



