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Second Order Parabolic PDE

Let U ⊂ Rn be open and bounded, and for T > 0 set

UT := U × (0,T ].

We’ll consider equations of the form

ut + Lu = f ; in UT (P)
u = 0; on ∂U × [0,T ]

u = g ; on U × {t = 0},

where L denotes a partial differential operator either in divergence
form

Lu := −
n∑

i ,j=1

(aij(~x , t)uxi )xj +
n∑

i=1

bi (~x , t)uxi + c(~x , t)u,

or non-divergence form

Lu := −
n∑

i ,j=1

aij(~x , t)uxixj +
n∑

i=1

bi (~x , t)uxi + c(~x , t)u.



Uniform Parabolicity

Definition. For either form of the operator L, we say that the
partial differential operator ∂t + L is uniformly parabolic in UT if
there exists a constant θ > 0 so that

n∑
i ,j=1

aij(~x , t)ξiξj ≥ θ|~ξ|2

for a.e. (~x , t) ∈ UT and all ~ξ ∈ Rn. I.e., if we denote
A(~x , t) = (aij(~x , t)), then

~ξTA(~x , t)~ξ ≥ θ|~ξ|2,

for a.e. (~x , t) ∈ UT and all ~ξ ∈ Rn.

Notes. 1. For the heat equation, L = −∆, so that A(~x , t) = I ,
and we have

~ξTA(~x , t)~ξ = |~ξ|2.
I.e., θ = 1.



Uniform Parabolicity

2. More generally, if A(~x , t) is symmetric, then by the min-max
principle, this condition holds if and only if the eigenvalues of
A(~x , t) are all bounded below by θ. Recall from last semester that
a partial differential operator ∂t + L is parabolic if the matrix
associated with its second order terms (including t) has 0 as one of
its eigenvalues and its other eigenvalues all have the same sign. So
an operator that is uniformly parabolic in UT is certainly parabolic
in UT .



Basic Assumptions

In order to avoid repeated statements of assumptions, we’ll collect
our basic assumptions for this section here. These will be:
1. U ⊂ Rn is open and bounded, and T > 0;
2. aij = aji for all i , j ∈ {1, 2, . . . , , n};
3. aij , bi , c ∈ L∞(UT ) for all i , j ∈ {1, 2, . . . , , n};
4. The operator L is in divergence form and uniformly parabolic

in UT ;
5. f ∈ L2(UT ), g ∈ L2(U).

We’ll refer to this collection of assumptions as Assumptions (A).

Note. In this section, unless explicitly stated otherwise, (·, ·) will
denote L2(U) inner product, and 〈·, ·〉 will denote the action of an
element of H−1(U) on an element of H1

0 (U).



The Time-Dependent Bilinear Form

Formally, if u is a smooth solution of

ut + Lu = f ,

with L in divergence form, we can multiply by a test function
φ ∈ C∞c (U) and proceed as in our section on elliptic operators to
obtain the relation

(ut , φ) + B[u, φ; t] = (f , φ),

for each t ∈ [0,T ], where

B[u, φ; t] :=

∫
U

{ n∑
i ,j=1

aij(~x , t)uxiφxj +
n∑

i=1

bi (~x , t)uxiφ+c(~x , t)uφ
}
d~x .

We’ll use this to develop our weak formulation for (P).



Notation

If u(·, t) ∈ H1
0 (U) for a.e. t ∈ (0,T ), then we’ll regard u as a map

t 7→ u(·, t). In this section, following the convention that Evans
adopts, we’ll denote such maps with a bold u. I.e.,

u(t)(~x) = u(~x , t),

and similarly for f(t). This allows us to express the strong form of
(P) as

u′ + Lu = f, for a.e. t ∈ (0,T ).

Here, we notice that since f ∈ L2(UT ), we have

‖f‖2L2(0,T ;L2(U)) =

∫ T

0
‖f(t)‖2L2(U)dt =

∫ T

0

∫
U
|f (~x , t)|2d~xdt <∞.

I.e., f ∈ L2(0,T ; L2(U)).



Motivating the Weak Formulation

The associated weak form of this equation can be expressed as

(u′, v) + B[u, v ; t] = (f, v),

for all v ∈ H1
0 (U) and a.e. t ∈ (0,T ). We see that

(u′, v) = −B[u, v ; t] + (f, v)

= −
∫
U

{ n∑
i ,j=1

aijuxi vxj +
n∑

i=1

biuxi v + cuv
}

+ (f, v)

=

∫
U

{(
f −

n∑
i=1

biuxi − cu
)
v −

n∑
j=1

( n∑
i=1

aijuxi
)
vxj

}
d~x

=

∫
U

{
g0v +

n∑
j=1

gjvxj
}
d~x .



Motivating the Weak Formulation

I.e.,

(u′, v) =

∫
U

{
g0v +

n∑
j=1

gjvxj
}
d~x ,

where for u(t) ∈ H1
0 (U), we have

g0(t) = f(t)−
n∑

i=1

bi (~x , t)u(t)xi − c(~x , t)u(t) ∈ L2(U)

gj(t) = −
n∑

i=1

aij(~x , t)uxi ∈ L2(U).



Motivating the Weak Formulation

If we compare with Theorem 5.9.1, we see that this suggests that
we should have u′(t) ∈ H−1(U) for a.e. t ∈ (0,T ), with

‖u′(t)‖H−1(U) ≤
(∫

U

n∑
j=0

|gj(t)|2d~x
)1/2

≤C
(
‖u(t)‖H1(U) + ‖f(t)‖L2(U)

)
.

This motivates our weak formulation of (P).



The Parabolic Weak Formulation

Definition. We say that a function u ∈ L2(0,T ;H1
0 (U)), with

u′ ∈ L2(0,T ;H−1(U)), is a weak solution of (P) if

(i) 〈u′, v〉+ B[u, v ; t] = (f, v) for all v ∈ H1
0 (U) and a.e.

t ∈ (0,T ), and

(ii) u(0) = g .

Note. We know from Theorem 5.9.3 that under these
assumptions, we have u ∈ C ([0,T ]; L2(U)), so the pointwise
evaluation u(0) = g is justified.



Galerkin Approximations

We’ll approach existence by first constructing solutions to certain
finite-dimensional approximations of the weak formulation of (P),
and then taking an appropriate limit. This method is named after
the Russian mathematician Boris Galerkin (1871-1945).

To begin, let {wk}∞k=1 denote an orthogonal basis of H1
0 (U) that is

also an orthonormal basis of L2(U). For example, such a basis is
constructed in the proof of Theorem 6.5.2 in Evans as
eigenfunctions for the Laplacian operator L = −∆ on U.

We fix any m ∈ {1, 2, . . . }, and look for solutions of the weak
formulation of (P) of the form

um(t) =
m∑

k=1

dk
m(t)wk ,

where the coefficient functions {dk
m(t)}mk=1 are to be determined.



Galerkin Approximations

If we substitute this ansatz into the weak formulation of (P), we
obtain the relation

〈
m∑

k=1

dk ′
m (t)wk , v〉+B[

m∑
k=1

dk
m(t)wk , v ; t] = (f(t), v), ∀ v ∈ H1

0 (U),

and using linearity
m∑

k=1

dk ′
m (t)〈wk , v〉+

m∑
k=1

dk
m(t)B[wk , v ; t] = (f(t), v), ∀ v ∈ H1

0 (U).

Here, we have wk ∈ H1
0 (U) for each fixed k ∈ {1, 2, . . . ,m}, so we

can replace 〈wk , v〉 with (wk , v)L2(U).



Galerkin Approximations

In fact, since um(t) is a finite-dimensional approximation of the
solution, we expect that this is too much to ask, but we can think
of replacing the requirement that this be true for all v ∈ H1

0 (U)
with the requirement that it be true for all v ∈ Span{wj}mj=1. I.e.,
we require

m∑
k=1

dk ′
m (t)(wk ,wj) +

m∑
k=1

dk
m(t)B[wk ,wj ; t] = (f(t),wj),

for all j ∈ {1, 2, . . . ,m}. We set

e jk(t) := B[wk ,wj ; t] and f j(t) := (f(t),wj),

and use orthonormality of {wk}nk=1 to obtain the first-order system
of ODE

d j ′
m (t) = −

m∑
k=1

e jk(t)dk
m(t) + f j(t), j = 1, 2, . . .m.



Galerkin Approximations

For initial values, we would like to set

um(0) = g ∈ L2(U),

but again this is too much to ask. Instead, we formally determine
the coefficients {dk

m(0)}mk=1 that we would need in order to have
the relation

g =
∞∑
k=1

dk
m(0)wk .

Again using orthonormality of {wk}∞k=1 , we see that

d j
m(0) = (g ,wj),

for each j ∈ {1, 2, . . . ,m}.



Galerkin Approximations

We now want to assert something about solvability for the ODE
system

d j ′
m (t) = −

m∑
k=1

e jk(t)dk
m(t) + f j(t), j = 1, 2, . . .m

d j
m(0) = (g ,wj),

and for this we need to better understand the nature of the
coefficents {f j(t)}mj=1 and {e jk(t)}mj=1. First,

‖f j‖2L2(0,T ) =

∫ T

0
|(f(t),wj)|2dt

c.s.
≤
∫ T

0
‖f(t)‖2L2(U)‖wj‖2L2(U)dt

= ‖f‖L2(0,T ;L2(U)) <∞,

so f j ∈ L2(0,T ;R) for all j ∈ {1, 2, . . . ,m}.



Galerkin Approximations

Likewise, for each e jk ,

‖e jk‖L∞(0,T ) = ‖B[wk ,wj ; t]‖L∞(0,T ),

and∣∣∣B[wk ,wj ; t]
∣∣∣ =
∣∣∣ ∫

U

{ n∑
i ,l=1

ail(wk)xj (wj)xl +
n∑

i=1

bi (wk)xiwj + cwkwj

}
d~x
∣∣∣

≤ C

∫
U

{ n∑
i ,l=1

|(wk)xj ||(wj)xl |+
n∑

i=1

|(wk)xi ||wj |+ |wk ||wj |
}
d~x

≤ C̃‖wk‖H1(U)‖wj‖H1(U) <∞,

so e jk ∈ L∞(0,T ;R) for all j , k ∈ {1, 2, . . . ,m}.



Galerkin Approximations

In summary, for the ODE system

d j ′
m (t) = −

m∑
k=1

e jk(t)dk
m(t) + f j(t), j = 1, 2, . . .m

d j
m(0) = (g ,wj),

we have f j ∈ L2(0,T ;R) and e jk ∈ L∞(0,T ;R) for all
j , k ∈ {1, 2, . . . ,m}, which is more than we need for what we want
to assert. Proceeding similarly as we did first semester, we can
show that as long as f j , e jk ∈ L1(0,T ;R), then there exists a
unique absolutely continuous solution

dm(t) = (d1
m(t), d2

m(t), . . . , dm
m (t))

to this system on [0,T ].

For details on this existence, see, e.g., Theorem 2.1 in “Spectral
Theory of Ordinary Differential Operators,” by Joachim Weidmann,
Lecture Notes in Mathematics 1258 (1987).



Galerkin Approximations

By construction, we see that

um(t) =
m∑

k=1

dk
m(t)wk , (G)

solves the finite-dimensional weak problem,

〈u′m,wj〉+ B[um,wj ; t] = (f,wj), ∀ j ∈ {1, 2, . . . ,m}, (FDW)

for a.e. t ∈ (0,T ), along with

dk
m(0) = (g ,wk), ∀ k ∈ {1, 2, . . . ,m}. (IC)

In this way, we have established the following theorem from Evans:

Theorem 7.1.1. Let Assumptions (A) hold. Then for each integer
m ∈ {1, 2, . . . }, there exists a unique function um of the form (G)
solving (FDW), (IC).



Galerkin Approximations

We refer to um(t) constructed in this way as the Galerkin
approximation of our sought solution u(t). Our goal will be to
show that as m→∞, the sequence {um}∞m=1 converges to a
solution of the weak formulation of (P) in an appropriate sense.


