Second Order Parabolic PDE: Energy Estimates and Existence of Weak Solutions

MATH 612, Texas A\&M University

Spring 2020

Energy Estimates

Theorem 7.1.2. Let Assumptions (A) hold, and let $\left\{\mathbf{u}_{m}\right\}_{m=1}^{\infty}$ denote the Galerkin approximations constructed in the proof of Theorem 7.1.1. Then there exists a constant C, depending only on U, T, and the coefficients of L, so that

$$
\begin{aligned}
\left\|\mathbf{u}_{m}\right\|_{C\left([0, T] ; L^{2}(U)\right)} & +\left\|\mathbf{u}_{m}\right\|_{L^{2}\left(0, T ; H_{0}^{1}(U)\right)}+\left\|\mathbf{u}_{m}^{\prime}\right\|_{L^{2}\left(0, T, H^{-1}(U)\right)} \\
& \leq C\left(\|\mathbf{f}\|_{L^{2}\left(0, T ; L^{2}(U)\right)}+\|g\|_{L^{2}(U)}\right)
\end{aligned}
$$

for all $m \in\{1,2, \ldots\}$.

Proof of Theorem 7.1.2

1. We recall that the Galerkin approximations have the form

$$
\mathbf{u}_{m}(t)=\sum_{k=1}^{m} d_{m}^{k}(t) w_{k}
$$

where the elements $\left\{w_{k}\right\}_{k=1}^{\infty}$ comprise an orthogonal basis of $H_{0}^{1}(U)$ that is also an orthonormal basis of $L^{2}(U)$, and the coefficient functions $\left\{d_{m}^{k}(t)\right\}_{k=1}^{m}$ are absolutely continuous on $[0, T]$.

In our proof of Theorem 7.1.1, we saw that the coefficient functions $\left\{d_{m}^{k}(t)\right\}_{k=1}^{m}$ can be chosen so that for a.e. $t \in(0, T)$,

$$
\left(\mathbf{u}_{m}^{\prime}(t), w_{k}\right)+B\left[\mathbf{u}_{m}(t), w_{k} ; t\right]=\left(\mathbf{f}(t), w_{k}\right), \quad \forall k \in\{1,2, \ldots, m\} .
$$

For each $k \in\{1,2, \ldots, m\}$, we can multiply this equation by $d_{m}^{k}(t)$, giving (by linearity)

$$
\left(\mathbf{u}_{m}^{\prime}(t), d_{m}^{k}(t) w_{k}\right)+B\left[\mathbf{u}_{m}(t), d_{m}^{k}(t) w_{k} ; t\right]=\left(\mathbf{f}(t), d_{m}^{k}(t) w_{k}\right)
$$

Proof of Theorem 7.1.2

If we now add these m equations and use linearity, we obtain

$$
\left(\mathbf{u}_{m}^{\prime}(t), \mathbf{u}_{m}(t)\right)+B\left[\mathbf{u}_{m}(t), \mathbf{u}_{m}(t) ; t\right]=\left(\mathbf{f}(t), \mathbf{u}_{m}(t)\right)
$$

for a.e. $t \in(0, T)$. Proceeding as in our proof of Theorem 6.2.2 (energy estimates in the elliptic case), we can show that under our assumptions there exist constants $\beta>0$ and $\gamma \geq 0$ so that

$$
\beta\left\|\mathbf{u}_{m}(t)\right\|_{H^{1}(U)}^{2} \leq B\left[\mathbf{u}_{m}(t), \mathbf{u}_{m}(t) ; t\right]+\gamma\left\|\mathbf{u}_{m}(t)\right\|_{L^{2}(U)}^{2},
$$

for all $t \in[0, T]$, and all $m \in\{1,2, \ldots\}$.
Since the coefficient functions $\left\{d_{m}^{k}(t)\right\}_{k=1}^{m}$ are absolutely continuous on $[0, T]$, we're justified in computing

$$
\frac{d}{d t}\left(\frac{1}{2}\left\|\mathbf{u}_{m}(t)\right\|_{L^{2}(U)}^{2}\right)=\left(\mathbf{u}_{m}^{\prime}(t), \mathbf{u}_{m}(t)\right)
$$

for a.e. $t \in(0, T)$.

Proof of Theorem 7.1.2

Observing additionally that

$$
\begin{aligned}
\left|\left(\mathbf{f}(t), \mathbf{u}_{m}(t)\right)\right| & \stackrel{\text { c.s. }}{\leq}\|\mathbf{f}(t)\|_{L^{2}(U)}\left\|\mathbf{u}_{m}(t)\right\|_{L^{2}(U)} \\
& \leq \frac{1}{2}\|\mathbf{f}(t)\|_{L^{2}(U)}^{2}+\frac{1}{2}\left\|\mathbf{u}_{m}(t)\right\|_{L^{2}(U)}^{2}
\end{aligned}
$$

we see that

$$
\begin{aligned}
\frac{d}{d t}\left(\frac{1}{2}\left\|\mathbf{u}_{m}(t)\right\|_{L^{2}(U)}^{2}\right)= & \left(\mathbf{u}_{m}^{\prime}(t), \mathbf{u}_{m}(t)\right) \\
= & \left(\mathbf{f}(t), \mathbf{u}_{m}(t)\right)-B\left[\mathbf{u}_{m}(t), \mathbf{u}_{m}(t) ; t\right] \\
\leq & \frac{1}{2}\|\mathbf{f}(t)\|_{L^{2}(U)}^{2}+\frac{1}{2}\left\|\mathbf{u}_{m}(t)\right\|_{L^{2}(U)}^{2} \\
& -\beta\left\|\mathbf{u}_{m}(t)\right\|_{H^{1}(U)}^{2}+\gamma\left\|\mathbf{u}_{m}(t)\right\|_{L^{2}(U)}^{2}
\end{aligned}
$$

Proof of Theorem 7.1.2

If we multiply by 2 , and rearrange terms, we can write
$\frac{d}{d t}\left\|\mathbf{u}_{m}(t)\right\|_{L^{2}(U)}^{2}+2 \beta\left\|\mathbf{u}_{m}(t)\right\|_{H^{1}(U)}^{2} \leq\|\mathbf{f}(t)\|_{L^{2}(U)}^{2}+(1+2 \gamma)\left\|\mathbf{u}_{m}(t)\right\|_{L^{2}(U)}^{2}$, for a.e. $t \in(0, T)$.
2. We set

$$
\begin{aligned}
& \eta(t):=\left\|\mathbf{u}_{m}(t)\right\|_{L^{2}(U)}^{2} \\
& \xi(t):=\|\mathbf{f}(t)\|_{L^{2}(U)}^{2},
\end{aligned}
$$

and by omitting the non-negative term $2 \beta\left\|\mathbf{u}_{m}(t)\right\|_{H^{1}(U)}^{2}$, we have the inequality

$$
\eta^{\prime}(t) \leq(1+2 \gamma) \eta(t)+\xi(t),
$$

for a.e. $t \in(0, T)$.

Proof of Theorem 7.1.2

l.e., we have

$$
\left(e^{-(1+2 \gamma) t} \eta\right)^{\prime} \leq e^{-(1+2 \gamma) t} \xi(t)
$$

and we can integrate this inequality to obtain

$$
e^{-(1+2 \gamma) t} \eta(t)-\eta(0) \leq \int_{0}^{t} e^{-(1+2 \gamma) s} \xi(s) d s
$$

and consequently

$$
\eta(t) \leq e^{(1+2 \gamma) t}\left(\eta(0)+\int_{0}^{t} e^{-(1+2 \gamma) s} \xi(s) d s\right)
$$

(Or just apply Gronwall's inequality.) Here,

$$
\begin{aligned}
\eta(0) & =\left\|\mathbf{u}_{m}(0)\right\|_{L^{2}(U)}^{2}=\left\|\sum_{k=1}^{m} d_{m}^{k}(0) w_{k}\right\|_{L^{2}(U)}^{2} \\
& =\sum_{k=1}^{m}\left|d_{m}^{k}(0)\right|^{2}=\sum_{k=1}^{m}\left|\left(g, w_{k}\right)\right|^{2} \leq \sum_{k=1}^{\infty}\left|\left(g, w_{k}\right)\right|^{2}=\|g\|_{L^{2}(U)}^{2}
\end{aligned}
$$

Proof of Theorem 7.1.2

We see that

$$
\begin{aligned}
\left\|\mathbf{u}_{m}(t)\right\|_{L^{2}(U)}^{2} & \leq e^{(1+2 \gamma) t}\left(\|g\|_{L^{2}(U)}^{2}+\int_{0}^{t} e^{-(1+2 \gamma) s}\|\mathbf{f}(s)\|_{L^{2}(U)}^{2} d s\right) \\
& \leq e^{(1+2 \gamma) T}\left(\|g\|_{L^{2}(U)}^{2}+\|\mathbf{f}\|_{L^{2}\left(0, T ; L^{2}(U)\right)}^{2}\right) .
\end{aligned}
$$

The right-hand side does not depend on t, so if we take a square root of both sides and compute a maximum over $t \in[0, T]$, we obtain the first part of our claim,

$$
\left\|\mathbf{u}_{m}\right\|_{C\left([0, T] ; L^{2}(U)\right)} \leq C_{1}\left(\|\mathbf{f}\|_{L^{2}\left(0, T ; L^{2}(U)\right)}+\|g\|_{L^{2}(U)}\right)
$$

for a constant C_{1}, depending only on T, U, and the coefficients of L (the latter two via γ). This gives the first part of our claim. We also note for use below the inequality

$$
\max _{0 \leq t \leq T}\left\|\mathbf{u}_{m}(t)\right\|_{L^{2}(U)}^{2} \leq \tilde{C}\left(\|\mathbf{f}\|_{L^{2}\left(0, T ; L^{2}(U)\right)}^{2}+\|g\|_{L^{2}(U)}^{2}\right)
$$

Proof of Theorem 7.1.2

3. Returning to the inequality
$\frac{d}{d t}\left\|\mathbf{u}_{m}(t)\right\|_{L^{2}(U)}^{2}+2 \beta\left\|\mathbf{u}_{m}(t)\right\|_{H^{1}(U)}^{2} \leq\|\mathbf{f}(t)\|_{L^{2}(U)}^{2}+(1+2 \gamma)\left\|\mathbf{u}_{m}(t)\right\|_{L^{2}(U)}^{2}$,
we can integrate from 0 to T to see that

$$
\begin{aligned}
& \left\|\mathbf{u}_{m}(T)\right\|_{L^{2}(U)}^{2}-\left\|\mathbf{u}_{m}(0)\right\|_{L^{2}(U)}^{2}+2 \beta\left\|\mathbf{u}_{m}\right\|_{L^{2}\left(0, T ; H_{0}^{1}(U)\right)}^{2} \\
& \quad \leq\|\mathbf{f}\|_{L^{2}\left(0, T ; L^{2}(U)\right)}^{2}+(1+2 \gamma) \int_{0}^{T}\left\|\mathbf{u}_{m}(t)\right\|_{L^{2}(U)}^{2} d t .
\end{aligned}
$$

We can rearrange this inequality (and drop $\left\|\mathbf{u}_{m}(T)\right\|_{L^{2}(U)}^{2}$) to see that

$$
\begin{aligned}
2 \beta\left\|\mathbf{u}_{m}\right\|_{L^{2}\left(0, T ; H_{0}^{1}(U)\right)}^{2} & \leq\|g\|_{L^{2}(U)}^{2}+\|\mathbf{f}\|_{L^{2}\left(0, T ; L^{2}(U)\right)}^{2} \\
& +(1+2 \gamma) \int_{0}^{T} \tilde{C}\left(\|\mathbf{f}\|_{L^{2}\left(0, T ; L^{2}(U)\right)}^{2}+\|g\|_{L^{2}(U)}^{2}\right) d t .
\end{aligned}
$$

Proof of Theorem 7.1.2

We see that

$$
\left\|\mathbf{u}_{m}\right\|_{L^{2}\left(0, T ; H_{0}^{1}(U)\right)}^{2} \leq\left(\frac{1+(1+2 \gamma) \tilde{C} T}{2 \beta}\right)\left(\|\mathbf{f}\|_{L^{2}\left(0, T ; L^{2}(U)\right)}^{2}+\|g\|_{L^{2}(U)}^{2}\right) .
$$

The constant only appears in this way to clarify how the terms were combined. This gives the second part of our claim.
4. Next, since $W_{m}:=\operatorname{Span}\left\{w_{k}\right\}_{k=1}^{m}$ is a closed subspace of $L^{2}(U)$, we can write

$$
L^{2}(U)=W_{m} \oplus W_{m}^{\perp} .
$$

Fix any $v \in H_{0}^{1}(U)$ with $\|v\|_{H^{1}(U)} \leq 1$, and write $v=v^{1}+v^{2}$, where $v^{1} \in W_{m}$ and $\left(v^{2}, w_{k}\right)=0$ for all $k \in\{1,2, \ldots, m\}$. This orthogonal complement is with respect to the $L^{2}(U)$ inner product, but since the $\left\{w_{k}\right\}_{k=1}^{\infty}$ are additionally orthogonal in the $H_{0}^{1}(U)$ inner product, we can conclude that v^{1} and v^{2} must be orthogonal in the $H_{0}^{1}(U)$ inner product.

Proof of Theorem 7.1.2

As a consequence of this orthogonality, we have

$$
\|v\|_{H^{1}(U)}^{2}=\left\|v^{1}\right\|_{H^{1}(U)}^{2}+\left\|v^{2}\right\|_{H^{1}(U)}^{2} \Longrightarrow\left\|v^{1}\right\|_{H^{1}(U)}^{2} \leq\|v\|_{H^{1}(U)}^{2}
$$

Since $v^{1} \in \operatorname{Span}\left\{w_{k}\right\}_{k=1}^{m}$, there exist constants $\left\{c_{k}\right\}_{k=1}^{m}$ so that

$$
v^{1}=\sum_{k=1}^{m} c_{k} w_{k} .
$$

If we multiply

$$
\left(\mathbf{u}_{m}^{\prime}(t), w_{k}\right)+B\left[\mathbf{u}_{m}(t), w_{k} ; t\right]=\left(\mathbf{f}(t), w_{k}\right),
$$

by c_{k} for each $k \in\{1,2, \ldots, m\}$, and sum the resulting relations, we find that

$$
\left(\mathbf{u}_{m}^{\prime}(t), v^{1}\right)+B\left[\mathbf{u}_{m}(t), v^{1} ; t\right]=\left(\mathbf{f}(t), v^{1}\right),
$$

for a.e. $t \in(0, T)$.

Proof of Theorem 7.1.2

Since $\mathbf{u}_{m}(t)=\sum_{k=1}^{m} d_{m}^{k}(t) w_{k}$, and the $\left\{w_{k}\right\}_{k=1}^{m}$ are orthogonal to v^{2}, we can write

$$
\begin{aligned}
\left\langle\mathbf{u}_{m}^{\prime}(t), v\right\rangle & =\left(\mathbf{u}_{m}^{\prime}(t), v\right)=\left(\mathbf{u}_{m}^{\prime}(t), v^{1}\right) \\
& =\left(\mathbf{f}(t), v^{1}\right)-B\left[\mathbf{u}_{m}(t), v^{1} ; t\right] .
\end{aligned}
$$

Similarly as in our proof of Theorem 6.2.2 (energy estimates in the elliptic case), we can show that under our assumptions there exists a constant α so that

$$
\left|B\left[\mathbf{u}_{m}(t), v^{1} ; t\right]\right| \leq \alpha\left\|\mathbf{u}_{m}(t)\right\|_{H^{1}(U)}\left\|v^{1}\right\|_{H^{1}(U)}
$$

for all $t \in[0, T]$ and all $m \in\{1,2, \ldots\}$.

Proof of Theorem 7.1.2

This allows us to compute the estimate

$$
\begin{aligned}
\left|\left\langle\mathbf{u}_{m}^{\prime}(t), v\right\rangle\right| & \leq\left|\left(\mathbf{f}(t), v^{1}\right)\right|+\left|B\left[\mathbf{u}_{m}(t), v^{1} ; t\right]\right| \\
& \leq\|\mathbf{f}(t)\|_{L^{2}(U)}\left\|v^{1}\right\|_{L^{2}(U)}+\alpha\left\|\mathbf{u}_{m}(t)\right\|_{H^{1}(U)}\left\|v^{1}\right\|_{H^{1}(U)} \\
& \leq\|\mathbf{f}(t)\|_{L^{2}(U)}+\alpha\left\|\mathbf{u}_{m}(t)\right\|_{H^{1}(U)}
\end{aligned}
$$

where we've observed that $\left\|v^{1}\right\|_{L^{2}(U)} \leq\left\|v^{1}\right\|_{H^{1}(U)} \leq 1$.
It follows that

$$
\begin{aligned}
\left\|\mathbf{u}_{m}^{\prime}(t)\right\|_{H^{-1}(U)} & =\sup _{\|v\|_{H_{0}^{1}(U)} \leq 1}\left|\left\langle\mathbf{u}_{m}^{\prime}(t), v\right\rangle\right| \\
& \leq\|\mathbf{f}(t)\|_{L^{2}(U)}+\alpha\left\|\mathbf{u}_{m}(t)\right\|_{H^{1}(U)}
\end{aligned}
$$

Proof of Theorem 7.1.2

Upon squaring and integrating, we see that

$$
\begin{aligned}
\int_{0}^{T}\left\|\mathbf{u}_{m}^{\prime}(t)\right\|_{H^{-1}(U)}^{2} d t & \leq \int_{0}^{T}\left(\|\mathbf{f}(t)\|_{L^{2}(U)}+\alpha\left\|\mathbf{u}_{m}(t)\right\|_{H^{1}(U)}\right)^{2} d t \\
& \leq C_{2}\left(\|\mathbf{f}\|_{L^{2}\left(0, T ; L^{2}(U)\right)}^{2}+\left\|\mathbf{u}_{m}\right\|_{L^{2}\left(0, T ; H^{1}(U)\right)}^{2}\right)
\end{aligned}
$$

If we combine this with our estimate above on $\left\|\mathbf{u}_{m}\right\|_{L^{2}\left(0, T ; H^{1}(U)\right)}^{2}$, we obtain the third part of our claim,

$$
\left\|\mathbf{u}_{m}^{\prime}\right\|_{L^{2}\left(0, T, H^{-1}(U)\right)} \leq C_{3}\left(\|\mathbf{f}\|_{L^{2}\left(0, T ; L^{2}(U)\right)}+\|g\|_{L^{2}(U)}\right)
$$

This concludes the proof.

Existence of Weak Solutions

Theorem 7.1.3. Let Assumptions (A) hold. Then there exists a weak solution to (\mathcal{P}).

Proof of Theorem 7.1.3.

1. First, it's clear from Theorem 7.1.2 that the sequence of Galerkin approximations $\left\{\mathbf{u}_{m}\right\}_{m=1}^{\infty}$ is bounded in $L^{2}\left(0, T ; H_{0}^{1}(U)\right)$, and likewise the sequence $\left\{\mathbf{u}_{m}^{\prime}\right\}_{m=1}^{\infty}$ is bounded in $L^{2}\left(0, T ; H^{-1}(U)\right)$.

We know from Theorem A.D. 3 that there exists a subsequence $\left\{\mathbf{u}_{m_{l}}\right\}_{1=1}^{\infty} \subset\left\{\mathbf{u}_{m}\right\}_{m=1}^{\infty}$ and an element $\mathbf{u} \in L^{2}\left(0, T ; H_{0}^{1}(U)\right)$ so that

$$
\mathbf{u}_{m_{l}} \rightharpoonup \mathbf{u} \quad \text { in } L^{2}\left(0, T ; H_{0}^{1}(U)\right)
$$

We can then take a subsequence of $\left\{\mathbf{u}_{m_{l}}\right\}_{l=1}^{\infty}$, which we'll continue to denote $\left\{\mathbf{u}_{m_{l}}\right\}_{l=1}^{\infty}$, so that for some element $v \in L^{2}\left(0, T ; H^{-1}(U)\right)$ we have

$$
\mathbf{u}_{m_{l}}^{\prime} \rightharpoonup \mathbf{v} \quad \text { in } L^{2}\left(0, T ; H^{-1}(U)\right)
$$

Proof of Theorem 7.1.3

We'll check in Problem 7.5 .5 that $\mathbf{v}=\mathbf{u}^{\prime}$.
2. Fix a positive integer N, and suppose $\mathbf{v} \in C^{1}\left([0, T] ; H_{0}^{1}(U)\right)$ has the form

$$
\mathbf{v}_{N}(t)=\sum_{k=1}^{N} d^{k}(t) w_{k}
$$

where the $\left\{d^{k}(t)\right\}_{k=1}^{N}$ are in $C^{1}([0, T] ; \mathbb{R})$, and the basis elements $\left\{w_{k}\right\}_{k=1}^{\infty}$ are the same ones we've been using for our Galerkin approximations.

Next, we choose any integer $m \geq N$, and recall from the proof of Theorem 7.1.1 that

$$
\begin{equation*}
\left\langle\mathbf{u}_{m}^{\prime}(t), w_{k}\right\rangle+B\left[\mathbf{u}_{m}(t), w_{k} ; t\right]=\left(\mathbf{f}(t), w_{k}\right), \quad \forall k \in\{1,2, \ldots, m\}, \tag{*}
\end{equation*}
$$

for a.e. $t \in(0, T)$.

Proof of Theorem 7.1.3

If we multiply $\left({ }^{*}\right)$ by $d^{k}(t)$ and sum over $k=1,2, \ldots, N$, we obtain

$$
\left\langle\mathbf{u}_{m}^{\prime}(t), \mathbf{v}_{N}(t)\right\rangle+B\left[\mathbf{u}_{m}(t), \mathbf{v}_{N}(t) ; t\right]=\left(\mathbf{f}(t), \mathbf{v}_{N}(t)\right),
$$

which we can integrate to get
$\int_{0}^{T}\left\{\left\langle\mathbf{u}_{m}^{\prime}(t), \mathbf{v}_{N}(t)\right\rangle+B\left[\mathbf{u}_{m}(t), \mathbf{v}_{N}(t) ; t\right]\right\} d t=\int_{0}^{T}\left(\mathbf{f}(t), \mathbf{v}_{N}(t)\right) d t$.
In particular, this is true for our subsequence $\left\{\mathbf{u}_{m_{l}}\right\}_{l=1}^{\infty}$ (possibly after omitting the first N terms), and we have
$\int_{0}^{T}\left\{\left\langle\mathbf{u}_{m_{l}}^{\prime}(t), \mathbf{v}_{N}(t)\right\rangle+B\left[\mathbf{u}_{m_{l}}(t), \mathbf{v}_{N}(t) ; t\right]\right\} d t=\int_{0}^{T}\left(\mathbf{f}(t), \mathbf{v}_{N}(t)\right) d t$.

Proof of Theorem 7.1.3

Here, the map

$$
\mathbf{u}_{m_{l}}^{\prime} \mapsto \int_{0}^{T}\left\langle\mathbf{u}_{m_{l}}^{\prime}(t), \mathbf{v}_{N}(t)\right\rangle d t
$$

corresponds with a bounded linear functional on $L^{2}\left(0, T ; H^{-1}(U)\right)$, and likewise the map

$$
\mathbf{u}_{m_{l}} \mapsto \int_{0}^{T} B\left[\mathbf{u}_{m_{l}}(t), \mathbf{v}_{N}(t) ; t\right] d t
$$

corresponds with a bounded linear functional on $L^{2}\left(0, T ; H_{0}^{1}(U)\right)$. By weak convergence, this allows us to take a limit as $I \rightarrow \infty$ to see that

$$
\int_{0}^{T}\left\{\left\langle\mathbf{u}^{\prime}(t), \mathbf{v}_{N}(t)\right\rangle+B\left[\mathbf{u}(t), \mathbf{v}_{N}(t) ; t\right]\right\} d t=\int_{0}^{T}\left(\mathbf{f}(t), \mathbf{v}_{N}(t)\right) d t
$$

for a.e. $t \in(0, T)$.

Proof of Theorem 7.1.3

Recall from our discussion of background on function spaces involving time (in particular, Theorem 5) that functions with the form of $\mathbf{v}_{N}(t)$ are dense in $L^{2}\left(0, T ; H_{0}^{1}(U)\right)$. (As in Theorem $5, N$ is not fixed, but rather just indicates that the sums are finite.) We can conclude that we have

$$
\int_{0}^{T}\left\{\left\langle\mathbf{u}^{\prime}(t), \mathbf{v}(t)\right\rangle+B[\mathbf{u}(t), \mathbf{v}(t) ; t]\right\} d t=\int_{0}^{T}(\mathbf{f}(t), \mathbf{v}(t)) d t, \quad\left({ }^{* *}\right)
$$

for all $v \in L^{2}\left(0, T ; H_{0}^{1}(U)\right)$. In particular for any fixed $v \in H_{0}^{1}(U)$, $\left(^{* *}\right)$ must hold for $\mathbf{v}(t)=\zeta(t) v$, for any test function $\zeta \in C_{c}^{\infty}((0, T) ; \mathbb{R})$. I.e., we must have

$$
\int_{0}^{T}\left\{\left\langle\mathbf{u}^{\prime}(t), v\right\rangle+B[\mathbf{u}(t), v ; t]-(\mathbf{f}(t), v)\right\} \zeta(t) d t=0
$$

for all such ζ.

Proof of Theorem 7.1.3

We know from a class lemma that this implies

$$
\left\langle\mathbf{u}^{\prime}(t), v\right\rangle+B[\mathbf{u}(t), v ; t]-(\mathbf{f}(t), v)
$$

for a.e. $t \in(0, T)$. I.e., this last relation holds for all $v \in H_{0}^{1}(U)$ and a.e., $t \in(0, T)$. This is Item (i) in our definition of a weak solution to (\mathcal{P}).
3. Last, we need to check that $\mathbf{u}(0)=g$. First, we'll check in the homework that for any $v \in C^{1}\left([0, T] ; H_{0}^{1}(U)\right)$ we can integrate by parts with
$\int_{0}^{T}\left\langle\mathbf{u}^{\prime}(t), \mathbf{v}(t)\right\rangle d t=-\int_{0}^{T}\left\langle\mathbf{v}^{\prime}(t), \mathbf{u}(t)\right\rangle d t+(\mathbf{u}(T), \mathbf{v}(T))-(\mathbf{u}(0), \mathbf{v}(0))$.
Given any $v_{0} \in H_{0}^{1}(U)$, we can take $\left\{\mathbf{v}_{N}(t)\right\}_{N=1}^{\infty}$ so that $\mathrm{v}_{N}(T)=0$ for all $N \in\{1,2, \ldots\}$ and $\mathrm{v}_{N}(0) \rightarrow \mathrm{v}_{0}$ in $L^{2}(U)$.

Proof of Theorem 7.1.3

Working from $\left({ }^{* *}\right)$ with $\mathbf{v}=\mathbf{v}_{N}$, we integrate by parts to obtain

$$
\begin{aligned}
\int_{0}^{T}\left\{-\left\langle\mathbf{v}_{N}^{\prime}(t), \mathbf{u}(t)\right\rangle\right. & \left.+B\left[\mathbf{u}(t), \mathbf{v}_{N}(t) ; t\right]\right\} d t \\
& =\int_{0}^{T}\left(\mathbf{f}(t), \mathbf{v}_{N}(t)\right) d t-\left(\mathbf{u}(0), \mathbf{v}_{N}(0)\right)
\end{aligned}
$$

Likewise, from the lead-in to (${ }^{* *}$)

$$
\begin{aligned}
\int_{0}^{T}\left\{-\left\langle\mathbf{v}_{N}^{\prime}(t), \mathbf{u}_{m}(t)\right\rangle\right. & \left.+B\left[\mathbf{u}_{m}(t), \mathbf{v}_{N}(t) ; t\right]\right\} d t \\
& =\int_{0}^{T}\left(\mathbf{f}(t), \mathbf{v}_{N}(t)\right) d t-\left(\mathbf{u}_{m}(0), \mathbf{v}_{N}(0)\right)
\end{aligned}
$$

for all $m \geq N$.

Proof of Theorem 7.1.3

In particular, this is true for our subsequence $\left\{\mathbf{u}_{m_{l}}\right\}_{l=1}^{\infty}$ (possibly after omitting the first N terms), and we have

$$
\begin{aligned}
\int_{0}^{T}\left\{-\left\langle\mathbf{v}_{N}^{\prime}(t), \mathbf{u}_{m_{l}}(t)\right\rangle\right. & \left.+B\left[\mathbf{u}_{m_{l}}(t), \mathbf{v}_{N}(t) ; t\right]\right\} d t \\
& =\int_{0}^{T}\left(\mathbf{f}(t), \mathbf{v}_{N}(t)\right) d t-\left(\mathbf{u}_{m_{l}}(0), \mathbf{v}_{N}(0)\right)
\end{aligned}
$$

For the left-hand side, we can take $I \rightarrow \infty$ similarly as before by weak convergence, while for the right-hand side, we recall that by construction

$$
\mathbf{u}_{m_{l}}(0)=\sum_{k=1}^{m_{I}} d_{m_{l}}^{k}(0) w_{k}=\sum_{k=1}^{m_{I}}\left(g, w_{k}\right) w_{k} \xrightarrow{\prime \rightarrow \infty} g, \quad \text { in } L^{2}(U) .
$$

Proof of Theorem 7.1.3

Taking $I \rightarrow \infty$ in this way, we see that

$$
\begin{aligned}
\int_{0}^{T}\left\{-\left\langle\mathbf{v}_{N}^{\prime}(t), \mathbf{u}(t)\right\rangle\right. & \left.+B\left[\mathbf{u}(t), \mathbf{v}_{N}(t) ; t\right]\right\} d t \\
& =\int_{0}^{T}\left(\mathbf{f}(t), \mathbf{v}_{N}(t)\right) d t-\left(g, \mathbf{v}_{N}(0)\right)
\end{aligned}
$$

Upon subtracting this equation from $\left({ }^{* * *}\right)$, we see that

$$
\left((g-\mathbf{u}(0)), \mathbf{v}_{N}(0)\right)=0
$$

for all $N \in\{1,2, \ldots\}$. As $N \rightarrow \infty, v_{N}(0) \rightarrow v_{0} \in H_{0}^{1}(U)$, giving

$$
\left((g-\mathbf{u}(0)), v_{0}\right)=0, \quad \forall v_{0} \in H_{0}^{1}(U)
$$

Since $H_{0}^{1}(U)$ is dense in $L^{2}(U)$, this implies $\mathbf{u}(0)=g$, completing the proof.

