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Energy Estimates

Theorem 7.1.2. Let Assumptions (A) hold, and let {u,}%_;
denote the Galerkin approximations constructed in the proof of
Theorem 7.1.1. Then there exists a constant C, depending only on
U, T, and the coefficients of L, so that

lumlleqo. 712y + umll 20, 7512 (uy) + IUmlli20, 7 H-2(1))
< C(HfHL2(0,T;L2(U)) + HgHB(U)),

forall me {1,2,...}.



Proof of Theorem 7.1.2

1. We recall that the Galerkin approximations have the form
m
um(t) = dk(t)w,
k=1

where the elements {wy }7°; comprise an orthogonal basis of
H2(U) that is also an orthonormal basis of L2(U), and the
coefficient functions {dX(t)}7_, are absolutely continuous on
[0, T].

In our proof of Theorem 7.1.1, we saw that the coefficient functions
{dk(t)}m_, can be chosen so that for a.e. t € (0, T),

(u,(t), wk) + Blum(t), wk; t] = (F(t), wk), Yke{l,2,...,m}.

For each k € {1,2,..., m}, we can multiply this equation by d (t),
giving (by linearity)

(Ui (2), s (E)Wk) + Blum(t), dis(t)wic £] = (F(2), dy(£) wic).



Proof of Theorem 7.1.2

If we now add these m equations and use linearity, we obtain

(Uin (), um(t)) + Blum(t), um(t); t] = (£(t), um(t)),

for a.e. t € (0, T). Proceeding as in our proof of Theorem 6.2.2
(energy estimates in the elliptic case), we can show that under our
assumptions there exist constants 5 > 0 and v > 0 so that

5““m(t)|ﬁ-/1(u) < Blup(t), um(t); ] ‘|"7Hum(t)’|i2(u)>
forall t € [0, T], and all m e {1,2,...}.

Since the coefficient functions {dX (t)}7_; are absolutely
continuous on [0, T], we're justified in computing

jt(i”"m( Dlzz()) = (Un(t), um(?)),

forae. te€ (0, 7).



Proof of Theorem 7.1.2

Observing additionally that

|(F(2), um(0))] < [IF(2)l] 2wy lum()]l 2wy
1 1
< IRy + 3 lum(®) By,
we see that
d 1
S lum(D)lZa(y) = (u(8) un(1)
(F(t), um(t)) — Blum(t), um(t); 1]
1 1
< §||f(t)H%2(u) + EHum(t)”%?(U)
= Bllum(®)1F 0y +um(B)l172(0)-



Proof of Theorem 7.1.2

If we multiply by 2, and rearrange terms, we can write

d
Jpllum(t )20y +2Bllum()lIFn y < IFENF2(0y+ (20 [um(B) 1 2(u).

forae. te€ (0, T).

2. We set
0(t) = lum(t)l72(u)
£(t) = (1) lIZ2(u)

and by omitting the non-negative term 26||um(t)\|?_,1(u), we have
the inequality

7' (t) < (14 2y)n(t) +&(1),
fora.e. t € (0, T).



Proof of Theorem 7.1.2

|.e., we have
(em(HH2tyy < &= (42)eg(r),

and we can integrate this inequality to obtain

t
e (122t (1) — (0) < /0 e (21)5¢(5)ds

and consequently

§0) < 0 () 1+ [ 0 g()a).
0

(Or just apply Gronwall's inequality.) Here,

1(0) =[Jum(0 ||L2 ) = = | Z dp( WkHL2(U)

= D> 1RO =D (g w)l” < D I, wi) P = ligliF (o)
k=1 k=1

k=1



Proof of Theorem 7.1.2

We see that

t
||um(t)||i2(u) < e(l+2’}’)t(”g”%2(u) -|-/0 e_(1+2W)5||f(s)||%2(U)ds)

< e(1+2v>T(||gHi2(U) + IIinz(o,r;sz)))'

The right-hand side does not depend on t, so if we take a square
root of both sides and compute a maximum over t € [0, T], we
obtain the first part of our claim,

lumllcqo, miezwy < G (Ifll20, 72wy + g2y )

for a constant C3, depending only on T, U, and the coefficients of
L (the latter two via v). This gives the first part of our claim. We
also note for use below the inequality

o2 [un(OlF2quy < € (117207200 + el



Proof of Theorem 7.1.2

3. Returning to the inequality

d
EHum(t)H%%U)""zm‘um(tw%—ll(U) < () F2(0y (1429 [um(D) 720

we can integrate from 0 to T to see that
lum( T2y = lum(O) 172y + 2Bl1umliF20, 713wy
T
< 1Pl iz + (14 20) [ n(6) ey

We can rearrange this inequality (and drop Hum(T)Hiz(U) ) to see
that

26”Um”/_2(0 T;HL(U)) < ”g||i2(u) + ”f||%2(0,T;L2(U))

i
+(1+27)/0 C (a0 r20y) + gz ) ot



Proof of Theorem 7.1.2

We see that

1+(1+2y9)CT
om0 rmeon < (55 ) (a0 mzqun +glEaqw))

The constant only appears in this way to clarify how the terms were
combined. This gives the second part of our claim.

4. Next, since W,, := Span{w,}7_, is a closed subspace of L2(U),
we can write

L2(U) = W, @ W2
Fix any v € H}(U) with [vIlp(uy < 1, and write v = vi4v2
where v € W,, and (v2, wy) = 0 forall k € {1,2,..., m}. Th|s
orthogonal complement is with respect to the L?(U) inner product,
but since the {wy}%° , are additionally orthogonal in the H}(U)
inner product, we can conclude that v! and v? must be orthogonal
in the H}(U) inner product.



Proof of Theorem 7.1.2

As a consequence of this orthogonality, we have

HVHHl(U) = HVIHHl(U + HVZH%-F(U) = ”V1HH1(U) < |Ivlin ()

Since v € Span{wy}T_,, there exist constants {cx}{_; so that

m
V]': E Cle Wi
k=1

If we multiply

(um(t), wi) + Blum(t), wi; t] = (F(t), wic),
by cx for each k € {1,2,..., m}, and sum the resulting relations,
we find that

(un(£), V1) + Blum(t), v t] = (F(2), v1),
forae. te€ (0, 7).



Proof of Theorem 7.1.2

Since um(t) = >_7; d&(t)wk, and the {wy}7_, are orthogonal to
v2, we can write

(Ul (), v) = (U (1), v) = (uj(t), V1)
=(f(¢), vl) — Blum(t), vl t].

Similarly as in our proof of Theorem 6.2.2 (energy estimates in the
elliptic case), we can show that under our assumptions there exists
a constant « so that

|Blum(t), vii ]l < allum(®)l a2 llvilnw).

forall t € [0, T] and all m e {1,2,...}.



Proof of Theorem 7.1.2

This allows us to compute the estimate
[{un(£), V) <I(F(2), vh)| + | Blum(t), v*; t]]
<IFO 2wy llviliew) + allum(®) ) llv
< ()l 2u) +04Hum( Nk

by
where we've observed that [[v|| 2y < [V} ]2y < 1.
It follows that

Jum(Ollh-1y = sup  [(up(t), v)]
”VHH&(U)SI

<[[f(®)ll 2y + allum(t) [ pr(v)-



Proof of Theorem 7.1.2

Upon squaring and integrating, we see that

T ) T 2
/0 I () 22y dt < /0 (IFO i) + allum(O) ) ot
= C2(Hf||%2(O,T;L2(U)) + HumH%Z(O,T;Hl(U)))‘

If we combine this with our estimate above on ||u,,ﬂ,||%2(0 T.HL(U))
we obtain the third part of our claim,

Iuinll 20,7, H-1(u)) < C3<HfHL2(O,T;L2(U)) + HgHL2(U)>-

This concludes the proof.



Existence of Weak Solutions

Theorem 7.1.3. Let Assumptions (A) hold. Then there exists a
weak solution to (P).

Proof of Theorem 7.1.3.

1. First, it's clear from Theorem 7.1.2 that the sequence of Galerkin

approximations {u,,}2°_; is bounded in L2(0, T; H3(U)), and

likewise the sequence {u’,}>°_; is bounded in L2(0, T; H~1(U)).

We know from Theorem A.D.3 that there exists a subsequence

{um, }?°; C {um}S>_; and an element u € L2(0, T; H}(U)) so that
Um — u in L2(0, T; H3 (V).

We can then take a subsequence of {u, }7°;, which we'll continue

to denote {um,, }7°;, so that for some element
v € L2(0, T; HY(U)) we have

up, —v in L2(0, T; H1(U)).



Proof of Theorem 7.1.3

We'll check in Problem 7.5.5 that v = u’.

2. Fix a positive integer N, and suppose v € C1([0, T]; H}(U)) has
the form

N
vn(t) =Y d (t)w,
k=1

where the {d*(t)}%_, are in C1([0, T];R), and the basis elements
{wi}22, are the same ones we've been using for our Galerkin
approximations.

Next, we choose any integer m > N, and recall from the proof of
Theorem 7.1.1 that

(Ul (t), wi) + Blum(t), wk; t] = (F(t), wx), Vke{1,2,...,m},
(*)
forae. t€ (0, 7).



Proof of Theorem 7.1.3

If we multiply (*) by d*(t) and sum over k = 1,2,..., N, we obtain
(uin(t), viv(t)) + Blum(t), v (t): t] = (F(t), vn(t)),
which we can integrate to get

T T
/ {(u/m(t), vn(t)) + Blum(t), va(t); t]}dt = / (fF(t),vn(t))dt.
0 0

In particular, this is true for our subsequence {upm, }7°; (possibly
after omitting the first N terms), and we have

T T
/ {(u’ml(t),vN(t)>+B[um,(t),vN(t);t]}dt:/ (F(¢), va(t))dt.
0 0



Proof of Theorem 7.1.3

Here, the map
-
i [l (0 (D)l
0

corresponds with a bounded linear functional on L2(0, T; H=1(U)),
and likewise the map

Um, — /OTB[um,(t),vN(t); t]dt

corresponds with a bounded linear functional on L?(0, T; H}(U)).
By weak convergence, this allows us to take a limit as / — oo to

see that
T

¢
| {w@me) + B, (o) o = [ (@ m(0)et,
0 0

forae. te€ (0, 7).



Proof of Theorem 7.1.3

Recall from our discussion of background on function spaces
involving time (in particular, Theorem 5) that functions with the
form of vy(t) are dense in L2(0, T; H}(U)). (As in Theorem 5, N
is not fixed, but rather just indicates that the sums are finite.) We
can conclude that we have

-
| {w©.v(0) + Blu(o), v(0) 1} ot = / (F(e). v(e))dt, ()
0
for all v € L2(0, T; H}(U)). In particular for any fixed v € H}(U),

(**) must hold for v(t) = {(t)v, for any test function
¢ € C((0,T);R). le., we must have

)
| {0+ Blute).vie = (0.0 c(e)ee =

for all such ¢.



Proof of Theorem 7.1.3

We know from a class lemma that this implies
(U'(t),v) + Blu(t), vi t] — (f(t),v)

fora.e. t € (0, T). le., this last relation holds for all v € H}(U)
and a.e.,, t € (0, T). This is Item (i) in our definition of a weak
solution to (P).

3. Last, we need to check that u(0) = g. First, we'll check in the
homework that for any v € CY([0, T]; H3(U)) we can integrate by
parts with

| w@wende =~ [ /(0. (@) @(T)v(T)~(u(0). v(0)).
0 0

Given any vo € H3(U), we can take {vn(t)}%_; so that
vy(T) =0 forall N e {1,2,...} and vy(0) — vo in L2(V).



Proof of Theorem 7.1.3

Working from (**) with v = vy, we integrate by parts to obtain
T
/0 { = ((t), u()+ Blu(e), va(e); ] bt
T
= [ (). un(e))de = (u(0). vn(0))

(***)

Likewise, from the lead-in to (**)
T
/0 { — (Vi (£), um(t))+ Blum(t), va(t); f]}df
T
:/O (f(t),vn(t))dt — (um(0), vn(0)),

forall m > N.



Proof of Theorem 7.1.3

In particular, this is true for our subsequence {u, }7°; (possibly
after omitting the first N terms), and we have

i
| {= i), (0 Bl (). e
T
:/o (F(2), vn(t))dt — (um, (0), v (0))-

For the left-hand side, we can take | — oo similarly as before by
weak convergence, while for the right-hand side, we recall that by
construction

my
um (0) = > d¥ (0w = Y (g, wi)w " g, in L2(V).
k=1



Proof of Theorem 7.1.3

Taking | — oo in this way, we see that

-
/{ (Viv(2), u())+ Blu(t), v (t); t] ot
0
.
_/O (F(t), va(t))dt — (g, vn(0))-

Upon subtracting this equation from (***), we see that
((g —u(0)),vn(0)) =0
forall N € {1,2,...}. As N — oo, vy(0) — vo € H3(U), giving
(g —u(0)),v0) =0, Vv € Hy(V).

Since H3(U) is dense in L2(U), this implies u(0) = g, completing
the proof.



