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Energy Estimates

Theorem 7.1.2. Let Assumptions (A) hold, and let {um}∞m=1
denote the Galerkin approximations constructed in the proof of
Theorem 7.1.1. Then there exists a constant C , depending only on
U, T , and the coefficients of L, so that

‖um‖C([0,T ];L2(U))+ ‖um‖L2(0,T ;H1
0 (U)) + ‖u′m‖L2(0,T ,H−1(U))

≤C
(
‖f‖L2(0,T ;L2(U)) + ‖g‖L2(U)

)
,

for all m ∈ {1, 2, . . . }.



Proof of Theorem 7.1.2

1. We recall that the Galerkin approximations have the form

um(t) =
m∑

k=1

dk
m(t)wk ,

where the elements {wk}∞k=1 comprise an orthogonal basis of
H1

0 (U) that is also an orthonormal basis of L2(U), and the
coefficient functions {dk

m(t)}mk=1 are absolutely continuous on
[0,T ].

In our proof of Theorem 7.1.1, we saw that the coefficient functions
{dk

m(t)}mk=1 can be chosen so that for a.e. t ∈ (0,T ),

(u′m(t),wk) + B[um(t),wk ; t] = (f(t),wk), ∀ k ∈ {1, 2, . . . ,m}.

For each k ∈ {1, 2, . . . ,m}, we can multiply this equation by dk
m(t),

giving (by linearity)

(u′m(t), d
k
m(t)wk) + B[um(t), d

k
m(t)wk ; t] = (f(t), dk

m(t)wk).



Proof of Theorem 7.1.2

If we now add these m equations and use linearity, we obtain

(u′m(t),um(t)) + B[um(t),um(t); t] = (f(t),um(t)),

for a.e. t ∈ (0,T ). Proceeding as in our proof of Theorem 6.2.2
(energy estimates in the elliptic case), we can show that under our
assumptions there exist constants β > 0 and γ ≥ 0 so that

β‖um(t)‖2H1(U) ≤ B[um(t),um(t); t] + γ‖um(t)‖2L2(U),

for all t ∈ [0,T ], and all m ∈ {1, 2, . . . }.

Since the coefficient functions {dk
m(t)}mk=1 are absolutely

continuous on [0,T ], we’re justified in computing

d

dt
(
1
2
‖um(t)‖2L2(U)) = (u′m(t),um(t)),

for a.e. t ∈ (0,T ).



Proof of Theorem 7.1.2

Observing additionally that

|(f(t),um(t))|
c.s.
≤ ‖f(t)‖L2(U)‖um(t)‖L2(U)

≤ 1
2
‖f(t)‖2L2(U) +

1
2
‖um(t)‖2L2(U),

we see that
d

dt
(
1
2
‖um(t)‖2L2(U)) = (u′m(t),um(t))

= (f(t),um(t))− B[um(t),um(t); t]

≤ 1
2
‖f(t)‖2L2(U) +

1
2
‖um(t)‖2L2(U)

− β‖um(t)‖2H1(U) + γ‖um(t)‖2L2(U).



Proof of Theorem 7.1.2

If we multiply by 2, and rearrange terms, we can write
d

dt
‖um(t)‖2L2(U)+2β‖um(t)‖2H1(U) ≤ ‖f(t)‖

2
L2(U)+(1+2γ)‖um(t)‖2L2(U),

for a.e. t ∈ (0,T ).

2. We set

η(t) := ‖um(t)‖2L2(U)

ξ(t) := ‖f(t)‖2L2(U),

and by omitting the non-negative term 2β‖um(t)‖2H1(U), we have
the inequality

η′(t) ≤ (1+ 2γ)η(t) + ξ(t),

for a.e. t ∈ (0,T ).



Proof of Theorem 7.1.2

I.e., we have
(e−(1+2γ)tη)′ ≤ e−(1+2γ)tξ(t),

and we can integrate this inequality to obtain

e−(1+2γ)tη(t)− η(0) ≤
∫ t

0
e−(1+2γ)sξ(s)ds,

and consequently

η(t) ≤ e(1+2γ)t
(
η(0) +

∫ t

0
e−(1+2γ)sξ(s)ds

)
.

(Or just apply Gronwall’s inequality.) Here,

η(0) = ‖um(0)‖2L2(U) = ‖
m∑

k=1

dk
m(0)wk‖2L2(U)

=
m∑

k=1

|dk
m(0)|2 =

m∑
k=1

|(g ,wk)|2 ≤
∞∑
k=1

|(g ,wk)|2 = ‖g‖2L2(U).



Proof of Theorem 7.1.2

We see that

‖um(t)‖2L2(U) ≤ e(1+2γ)t
(
‖g‖2L2(U) +

∫ t

0
e−(1+2γ)s‖f(s)‖2L2(U)ds

)
≤ e(1+2γ)T

(
‖g‖2L2(U) + ‖f‖

2
L2(0,T ;L2(U))

)
.

The right-hand side does not depend on t, so if we take a square
root of both sides and compute a maximum over t ∈ [0,T ], we
obtain the first part of our claim,

‖um‖C([0,T ];L2(U)) ≤ C1

(
‖f‖L2(0,T ;L2(U)) + ‖g‖L2(U)

)
,

for a constant C1, depending only on T , U, and the coefficients of
L (the latter two via γ). This gives the first part of our claim. We
also note for use below the inequality

max
0≤t≤T

‖um(t)‖2L2(U) ≤ C̃
(
‖f‖2L2(0,T ;L2(U)) + ‖g‖

2
L2(U)

)
.



Proof of Theorem 7.1.2

3. Returning to the inequality
d

dt
‖um(t)‖2L2(U)+2β‖um(t)‖2H1(U) ≤ ‖f(t)‖

2
L2(U)+(1+2γ)‖um(t)‖2L2(U),

we can integrate from 0 to T to see that

‖um(T )‖2L2(U) − ‖um(0)‖2L2(U) + 2β‖um‖2L2(0,T ;H1
0 (U))

≤ ‖f‖2L2(0,T ;L2(U)) + (1+ 2γ)
∫ T

0
‖um(t)‖2L2(U)dt.

We can rearrange this inequality (and drop ‖um(T )‖2L2(U) ) to see
that

2β‖um‖2L2(0,T ;H1
0 (U)) ≤‖g‖

2
L2(U) + ‖f‖

2
L2(0,T ;L2(U))

+(1+ 2γ)
∫ T

0
C̃
(
‖f‖2L2(0,T ;L2(U)) + ‖g‖

2
L2(U)

)
dt.



Proof of Theorem 7.1.2

We see that

‖um‖2L2(0,T ;H1
0 (U)) ≤

(1+ (1+ 2γ)C̃T

2β

)(
‖f‖2L2(0,T ;L2(U))+‖g‖

2
L2(U)

)
.

The constant only appears in this way to clarify how the terms were
combined. This gives the second part of our claim.

4. Next, since Wm := Span{wk}mk=1 is a closed subspace of L2(U),
we can write

L2(U) = Wm ⊕W⊥
m .

Fix any v ∈ H1
0 (U) with ‖v‖H1(U) ≤ 1, and write v = v1 + v2,

where v1 ∈Wm and (v2,wk) = 0 for all k ∈ {1, 2, . . . ,m}. This
orthogonal complement is with respect to the L2(U) inner product,
but since the {wk}∞k=1 are additionally orthogonal in the H1

0 (U)
inner product, we can conclude that v1 and v2 must be orthogonal
in the H1

0 (U) inner product.



Proof of Theorem 7.1.2

As a consequence of this orthogonality, we have

‖v‖2H1(U) = ‖v
1‖2H1(U) + ‖v

2‖2H1(U) =⇒ ‖v1‖2H1(U) ≤ ‖v‖
2
H1(U).

Since v1 ∈ Span{wk}mk=1, there exist constants {ck}mk=1 so that

v1 =
m∑

k=1

ckwk .

If we multiply

(u′m(t),wk) + B[um(t),wk ; t] = (f(t),wk),

by ck for each k ∈ {1, 2, . . . ,m}, and sum the resulting relations,
we find that

(u′m(t), v
1) + B[um(t), v

1; t] = (f(t), v1),

for a.e. t ∈ (0,T ).



Proof of Theorem 7.1.2

Since um(t) =
∑m

k=1 d
k
m(t)wk , and the {wk}mk=1 are orthogonal to

v2, we can write

〈u′m(t), v〉 =(u′m(t), v) = (u′m(t), v
1)

= (f(t), v1)− B[um(t), v
1; t].

Similarly as in our proof of Theorem 6.2.2 (energy estimates in the
elliptic case), we can show that under our assumptions there exists
a constant α so that

|B[um(t), v
1; t]| ≤ α‖um(t)‖H1(U)‖v1‖H1(U),

for all t ∈ [0,T ] and all m ∈ {1, 2, . . . }.



Proof of Theorem 7.1.2

This allows us to compute the estimate

|〈u′m(t), v〉| ≤ |(f(t), v1)|+ |B[um(t), v
1; t]|

≤ ‖f(t)‖L2(U)‖v1‖L2(U) + α‖um(t)‖H1(U)‖v1‖H1(U)

≤‖f(t)‖L2(U) + α‖um(t)‖H1(U),

where we’ve observed that ‖v1‖L2(U) ≤ ‖v1‖H1(U) ≤ 1.

It follows that

‖u′m(t)‖H−1(U) = sup
‖v‖

H1
0 (U)
≤1
|〈u′m(t), v〉|

≤ ‖f(t)‖L2(U) + α‖um(t)‖H1(U).



Proof of Theorem 7.1.2

Upon squaring and integrating, we see that∫ T

0
‖u′m(t)‖2H−1(U)dt ≤

∫ T

0

(
‖f(t)‖L2(U) + α‖um(t)‖H1(U)

)2
dt

≤C2

(
‖f‖2L2(0,T ;L2(U)) + ‖um‖2L2(0,T ;H1(U))

)
.

If we combine this with our estimate above on ‖um‖2L2(0,T ;H1(U)),
we obtain the third part of our claim,

‖u′m‖L2(0,T ,H−1(U)) ≤ C3

(
‖f‖L2(0,T ;L2(U)) + ‖g‖L2(U)

)
.

This concludes the proof. �



Existence of Weak Solutions

Theorem 7.1.3. Let Assumptions (A) hold. Then there exists a
weak solution to (P).

Proof of Theorem 7.1.3.

1. First, it’s clear from Theorem 7.1.2 that the sequence of Galerkin
approximations {um}∞m=1 is bounded in L2(0,T ;H1

0 (U)), and
likewise the sequence {u′m}∞m=1 is bounded in L2(0,T ;H−1(U)).

We know from Theorem A.D.3 that there exists a subsequence
{uml
}∞l=1 ⊂ {um}∞m=1 and an element u ∈ L2(0,T ;H1

0 (U)) so that

uml
⇀ u in L2(0,T ;H1

0 (U)).

We can then take a subsequence of {uml
}∞l=1, which we’ll continue

to denote {uml
}∞l=1, so that for some element

v ∈ L2(0,T ;H−1(U)) we have

u′ml
⇀ v in L2(0,T ;H−1(U)).



Proof of Theorem 7.1.3

We’ll check in Problem 7.5.5 that v = u′.

2. Fix a positive integer N, and suppose v ∈ C 1([0,T ];H1
0 (U)) has

the form

vN(t) =
N∑

k=1

dk(t)wk ,

where the {dk(t)}Nk=1 are in C 1([0,T ];R), and the basis elements
{wk}∞k=1 are the same ones we’ve been using for our Galerkin
approximations.

Next, we choose any integer m ≥ N, and recall from the proof of
Theorem 7.1.1 that

〈u′m(t),wk〉+ B[um(t),wk ; t] = (f(t),wk), ∀ k ∈ {1, 2, . . . ,m},
(*)

for a.e. t ∈ (0,T ).



Proof of Theorem 7.1.3

If we multiply (*) by dk(t) and sum over k = 1, 2, . . . ,N, we obtain

〈u′m(t), vN(t)〉+ B[um(t), vN(t); t] = (f(t), vN(t)),

which we can integrate to get∫ T

0

{
〈u′m(t), vN(t)〉+B[um(t), vN(t); t]

}
dt =

∫ T

0
(f(t), vN(t))dt.

In particular, this is true for our subsequence {uml
}∞l=1 (possibly

after omitting the first N terms), and we have∫ T

0

{
〈u′ml

(t), vN(t)〉+B[uml
(t), vN(t); t]

}
dt =

∫ T

0
(f(t), vN(t))dt.



Proof of Theorem 7.1.3

Here, the map

u′ml
7→
∫ T

0
〈u′ml

(t), vN(t)〉dt

corresponds with a bounded linear functional on L2(0,T ;H−1(U)),
and likewise the map

uml
7→
∫ T

0
B[uml

(t), vN(t); t]dt

corresponds with a bounded linear functional on L2(0,T ;H1
0 (U)).

By weak convergence, this allows us to take a limit as l →∞ to
see that∫ T

0

{
〈u′(t), vN(t)〉+ B[u(t), vN(t); t]

}
dt =

∫ T

0
(f(t), vN(t))dt,

for a.e. t ∈ (0,T ).



Proof of Theorem 7.1.3

Recall from our discussion of background on function spaces
involving time (in particular, Theorem 5) that functions with the
form of vN(t) are dense in L2(0,T ;H1

0 (U)). (As in Theorem 5, N
is not fixed, but rather just indicates that the sums are finite.) We
can conclude that we have∫ T

0

{
〈u′(t), v(t)〉+ B[u(t), v(t); t]

}
dt =

∫ T

0
(f(t), v(t))dt, (**)

for all v ∈ L2(0,T ;H1
0 (U)). In particular for any fixed v ∈ H1

0 (U),
(**) must hold for v(t) = ζ(t)v , for any test function
ζ ∈ C∞c ((0,T );R). I.e., we must have∫ T

0

{
〈u′(t), v〉+ B[u(t), v ; t]− (f(t), v)

}
ζ(t)dt = 0,

for all such ζ.



Proof of Theorem 7.1.3

We know from a class lemma that this implies

〈u′(t), v〉+ B[u(t), v ; t]− (f(t), v)

for a.e. t ∈ (0,T ). I.e., this last relation holds for all v ∈ H1
0 (U)

and a.e., t ∈ (0,T ). This is Item (i) in our definition of a weak
solution to (P).

3. Last, we need to check that u(0) = g . First, we’ll check in the
homework that for any v ∈ C 1([0,T ];H1

0 (U)) we can integrate by
parts with∫ T

0
〈u′(t), v(t)〉dt = −

∫ T

0
〈v′(t),u(t)〉dt+(u(T ), v(T ))−(u(0), v(0)).

Given any v0 ∈ H1
0 (U), we can take {vN(t)}∞N=1 so that

vN(T ) = 0 for all N ∈ {1, 2, . . . } and vN(0)→ v0 in L2(U).



Proof of Theorem 7.1.3

Working from (**) with v = vN , we integrate by parts to obtain∫ T

0

{
− 〈v′N(t),u(t)〉+B[u(t), vN(t); t]

}
dt

=

∫ T

0
(f(t), vN(t))dt − (u(0), vN(0)).

(***)

Likewise, from the lead-in to (**)∫ T

0

{
− 〈v′N(t),um(t)〉+B[um(t), vN(t); t]

}
dt

=

∫ T

0
(f(t), vN(t))dt − (um(0), vN(0)),

for all m ≥ N.
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In particular, this is true for our subsequence {uml
}∞l=1 (possibly

after omitting the first N terms), and we have∫ T

0

{
− 〈v′N(t),uml

(t)〉+B[uml
(t), vN(t); t]

}
dt

=

∫ T

0
(f(t), vN(t))dt − (uml

(0), vN(0)).

For the left-hand side, we can take l →∞ similarly as before by
weak convergence, while for the right-hand side, we recall that by
construction

uml
(0) =

ml∑
k=1

dk
ml
(0)wk =

ml∑
k=1

(g ,wk)wk
l→∞→ g , in L2(U).



Proof of Theorem 7.1.3

Taking l →∞ in this way, we see that∫ T

0

{
− 〈v′N(t),u(t)〉+B[u(t), vN(t); t]

}
dt

=

∫ T

0
(f(t), vN(t))dt − (g , vN(0)).

Upon subtracting this equation from (***), we see that

((g − u(0)), vN(0)) = 0

for all N ∈ {1, 2, . . . }. As N →∞, vN(0)→ v0 ∈ H1
0 (U), giving

((g − u(0)), v0) = 0, ∀ v0 ∈ H1
0 (U).

Since H1
0 (U) is dense in L2(U), this implies u(0) = g , completing

the proof. �


