Second Order Parabolic PDE: Uniqueness and
Regularity

MATH 612, Texas A&M University

Spring 2020



Uniqueness

Theorem 7.1.4. Let Assumptions (A) hold. Then there exists at
most one weak solution to (P).

Proof of Theorem 7.1.4.
Let u, @i denote two weak solutions of (P), and set
w:=u-—u.
Then, by linearity,
(W'(t),v) + Blw(t),v;t] =0

for all v € H3(U) for a.e. t € (0, T), and additionally w(0) = 0. In
particular, since w(t) € H}(U) for a.e. t € (0, T) , we have

(W'(t),w(t)) + Blw(t),w(t); t] = 0.



Proof of Theorem 7.1.4

Using Theorem 5.9.3, we can compute

(e ) = 200 (0) w()

= —2B[w(t), w(t); t]
<2y|w(t)72u) — 281w ()l w)
< 29| w()[I32(yy-
If we set n(t) = ||w(t )||L2(U then we have
(e77') <0 = e™(t) —n(0) < 0.

But 7(0) = 0, so this implies n(t) = 0 for all t € [0, T]. We
conclude that u = i, establishing the claimed uniqueness.



Parabolic Regularity

As we did with elliptic regularity, we'll work through a formal
calculation to get an idea of why we might expect solutions to be in
spaces with more regularity than our weak solutions.

For this, we'll consider the inhomogeneous heat equation
us—Au=7Ff, inR"x(0,T]
u(x,0)=g, xeR"
where we'll take f € L?(R" x (0, T)) and g € H}(R"), and we'll
assume that u(X, t) — 0 as |X| — oo so that we don't have

boundary terms when we integrate by parts on R". We'll formally
take derivatives as needed.



Parabolic Regularity

First, we compute
/ f2d>?:/ (up — Au)?dx
= / u? — 2uAu+ (Au)?dx

Pa_“s/ u? 4+ 2Du; - Du + (Au)?dX.
Here, we recall from our similar analysis for elliptic problems that
/ (Au)?dX = | |D?ul?dX,
n Rn
and we also note that

%|Du|2 = 2Du; - Du.



Parabolic Regularity

This allows us to write
d
/ f2dx = / u? + a\Du|2 + |D?ul?dx.

We now integrate this relation on [0, 7] to see that

//f2d>‘<’dt:/ / u? + |D?u?dxdt
0 n 0 n

+ [ |Du(®, 7)) — |Du(Z,0)]2d.
Rn

We can rearrange this relation into

|Du(>?,r)|2d>?+/ / u? + |D?u?dxdt
Rn 0 Rn

:/ / f2d>?dt+/ |Dg|*dX.
0 n Rn



Parabolic Regularity

If we leave out [ [pn u? 4+ |D?u|?dXdt, we obtain the inequality

/ \Du(>?,7')]2d>?§/ f2d>?dt+/ Dg[2d%,
R” 0 Rn Rn

for all 7 € [0, T]. If we compute the supremum over 7 € [0, T], we
obtain

.
sup |Du(>"<’,7)|2d>?§/ / fzd)?dt~|—/ |Dg|?dX.
0<7<T JRn 0 n Rn

Proceeding similarly for the omitted terms, we arrive at the
inequality

.
sup \Du(i,r)|2d>?+/ / u? + |D?ul?dxdt
0<7<T JR" 0 n

N
gz/ / f2dxdt + [ |Dg|?dX.
0 n IRY



Parabolic Regularity

This suggests that with f € [2(R" x (0, T)) and g € H(R"), we
should get

u € L0, T; HY(R™) N L2(0, T; H?(R")),

and
u’ € L%(0, T; L*(R™)).

In order to improve on this, suppose we assume
f, € L2(R" x (0, T)) and g € H2(R"). We can then take a time
derivative of our original equation to obtain
i —Ali=f, inR"x (0, T]
i(%,0) =g, XcR",
where ii = u;, f = f;, and & = u:(-,0) = (-,0) + Ag € [*(R").



Parabolic Regularity

If we multiply this equation by & and integrate over R" x (0,7), we
obtain

/ / dipdxdt — / / GAGdRdt = / / fidxdt.
0 n 0 n 0 n

Integrating the middle integral by parts, we can write

// ~2dxdt+/ \DaFdzdt—/ / fousdXdt,
n 0 Rn 0 n

and so

1 T
/ (X, 7)% — i(x, 0)2d>‘<'+/ \Duy2dxdt

2
/ / frusdXdt.



Parabolic Regularity

Rearranging terms, we see that

1 T
2/ ut(>_<’,7')2d>_<'+/ |Dut| dxdt

//ftutdxdtJr /(f()?,O)+Ag)2d>?
< / / Eff futdxdt + / f(%,0)% + (Ag)%dx. (¥)
O n n

If we set 1
)= [z P

and leave out [ [, |Du|?dXdt from the above inequality, we find

T T 1
T)g/ C(t)dt—i—(/ / 2f3d>?dt+/ f(>?,0)2+|D2g\2d>?).
0 0 n n



Parabolic Regularity

According to an integral form of Gronwall's inequality (see p. 709
in Evans), we can conclude that

/ /  R2dgdt + / F(X,0)2 + |D2g\2d>?) (1 + Tef),

for all 7 € [0, T]. In particular, we can take the supremum over
7 € [0, T] to see that

1
sup / ue(X, 7)2dx

0<r<T 2

Tr
<G(T) / / 2f3d>?dt+/ f(>?,0)2+]Dg\2d>?>.
0 n n



Parabolic Regularity

Returning to (*), we can leave off § [, u:(X, 7)? to obtain the
inequality

T T 1 1
/ |Dut|2d>?dt§/ / ~f2 4 Zuldxdt

0 Rn 0 n 2 2
+/ f(%,0)% + |D?*g|?dx.

In this expression, we can estimate fOT Jgn 3uZdXdt by

/ /n ~u?dxdt
g/o { / /nfzdde—/ F(%, 0)2+yD2g|2dx)} t

The integrand in brackets on the right-hand side does not depend
on t, so we obtain the estimate on the next slide.



Parabolic Regularity

We have

.
1
//ufd;edt
0 n
< TG(T / / fzdde—/ f(X, 0)2+yDZg|2dx>.

Combining these observations (and incorporating all factors of %
into constants), we obtain the inequality

sup /ut(x T) dx+/ / |Du| dXdt
0<r<T

<G(T / / f2dxdt+/ f(>?,0)2+\D2g\2d>?>.



Parabolic Regularity

According to Theorem 5.9.2, we have the embedding estimate

Og‘fiXTHf( )l 2mny < C3(T)(Hf||L2(R"><(O,T)) + H"tHL%Rw(o,r)))-
In particular,
17 0)llizery < G(T) (1 lizoc(o. 1y + el 2o, )

This allows us to write
-
sup / ut(>?,7')2d>?—|—/ / |Dut|2d>?dt
0<7<T JRr

<C(T / / f2+f2dxdt+/ |D?g|? dx



Parabolic Regularity

In addition, we can use the relation —Au = f — u; to write
D2u(%, t)2d5 = / (Au(Z, £))2d5 = / (F(%,£) — 1)2d%
Rn n
< 2/ (X, t)% 4 us(%, t)?dX.

n

We can compute the supremum over t € [0, T] on both sides of
this relation, using the inequalities on the previous slide to see that

2
2,207 < 2 ) )
0P Rn|D ul*dxX <2G(T) <||fHL2(1R 0,7y T el 2w ><(0,T))>

.
+2C4(T)</ / £ +ft2d>?dt+/ yD2g|2d;e).
0 Rn Rn



Parabolic Regularity

We can combine all of these observations into the following
inequality:

.
sup / ue(%, )2 —|—]D2u(>?,t)\2d>'<'+/ | Dudxid

0<t<T
<G(T / / 2 4+ f2dXdt + |D2g\2dx).
n ]Rn
This suggests that we should have
u e L0, T; H3(R™))
and

u’ € L(0, T; L2(R™)) N L2(0, T; HY(R™)).

We'll conclude by summarizing the rigorous version of these
observations.



Parabolic Regularity

Theorem 7.1.5. In addition to Assumptions (A), assume QU is
C! and th_at the coefficients a¥, b, ¢ are independent of t and
al e CL(U).

(i) Assume
g € H}(U), fel?0,T;L3)),

and let u denote the unique weak solution of (P). Then
u € L((0, T); Hy(U)) N L2(0, T; H*(U)), u’ € L2(0, T; L2(U)),

and there exists a constant C, depending only on U, T, and the
coefficients of L, so that

HUHLoo((o,T);Hg(U))Jr ull 20, 7512(0y) + IW'[ 20,7, 2(0))

< C(”fHLZ(o,T;B(U)) + ||g||H1(U)>-



Parabolic Regularity

(ii) If additionally
g € H3(U), f L0, T;L%(V)),
then
uc L((0, T); H*(U)), u' € L>=(0, T;L*(U))NL*0, T; H(U)),
u” € 1%(0, T; H1(V)),

and there exists a constant C, depending only on U, T, and the
coefficients of L, so that

Jull oo o, 7y 2wy + 10 oo 0, 752(0y) + 17120, 7 12 (1)

Hu"ll 20, 7:H-1(u)) < C(HfHHl(O,T;B(U)) + Hg||H2(U)>-



Parabolic Regularity

In order to connect this to classical spaces, notice that one
implication is that we have

uc WhH2(0, T; Hy(U)).
We know from Theorem 5.9.2 that this implies that
u € C([0, T]; Hy(U)).

Forn=1,Reg (H})=1-3 =1 so u(x,t) = (u(t))(x) is
continuous in both X and t (Hdlder continuous in X). With more
assumptions, we can obtain higher regularity and establish
conditions under which our weak solutions are classical. See

Theorems 7.1.6 and 7.1.7 on higher regularity.



