
Sobolev Spaces: Compact Embeddings, Difference
Quotients, the Dual Space of H1

0

MATH 612, Texas A&M University

Spring 2020



Compact Embeddings

Recall that we say a Banach space X is compactly embedded in a
Banach space Y , denoted X ⊂⊂ Y , if X ⊂ Y , and the identity
map Iu = u, viewed as a map from X to Y is compact (i.e., maps
bounded subsets of X to precompact subsets of Y ).

Theorem 5.7.1. (Rellich-Kondrachov Compactness Theorem)
Suppose U ⊂ Rn is open and bounded with a C 1 boundary, and
Reg (W 1,p) ≤ 0 (not strict). If Reg (Lq) < Reg (W 1,p) (strict),
then W 1,p(U) ⊂⊂ Lq(U).



Compact Embeddings

Notes. 1. This generalizes as follows for j , k ∈ {0, 1, 2, . . . }: if
Reg (W k,p) ≤ 0 and Reg (W j ,q) < Reg (W k+j ,p), then
W k+j ,p(U) ⊂⊂W j ,q(U). The same statement is true if
Reg (W k,p) > 0.

2. The following is also true: if Reg (W k,p) > 0, then
W k,p(U) ⊂⊂ C `

∗,γ(Ū) for all 0 < γ < γ∗ (with `∗ and γ∗ specified
as in Theorem 5.6.6.)

3. If we replace W ·,· in Notes 1 and 2 with W ·,·
0 , we get the same

results for open bounded sets U ⊂ Rn (with no assumption on ∂U).

4. For additional generalizations, see Chapter 6 of Adams and
Fournier.



Difference Quotients

Suppose U ⊂ Rn is open (not necessarily bounded), u ∈ L1
loc(U),

and V ⊂⊂ U.

Definitions.

(i) The i th difference quotient of size h is

Dh
i u(~x) :=

u(~x + hêi )− u(~x)

h
; i ∈ {1, 2, . . . , n},

for all ~x ∈ V and h ∈ R so that 0 < |h| < dist(V , ∂U).

(ii) Dhu := (Dh
1u,D

h
2u, . . . ,D

h
nu).



Difference Quotients

Theorem 5.8.3. Let U ⊂ Rn be open (not necessarily bounded),
and u ∈ L1

loc(U).

(i) Suppose 1 ≤ p <∞. Then for each V ⊂⊂ U there is a
constant C , depending only on p, n, and V , so that

‖Dhu‖Lp(V ) ≤ C‖Du‖Lp(U)

for each u ∈W 1,p(U) and all 0 < |h| < 1
2dist(V , ∂U).

(ii) Suppose 1 < p <∞, V ⊂⊂ U, u ∈ Lp(V ), and there exists a
constant C , possibly depending on n, p,U, and V , so that

‖Dhu‖Lp(V ) ≤ C

for all 0 < |h| < 1
2dist(V , ∂U). Then u ∈W 1,p(V ), and

‖Du‖Lp(V ) ≤ C .



Difference Quotients

Notes. 1. We’ll characterize the case p =∞ in the next theorem.

2. Assertion (ii) is not true for p = 1. (See Problem 5.10.12.)

3. This will be our primary tool for proving that solutions to PDE
have higher regularity than the function spaces we use for our
existence theory.



Difference Quotients

Theorem 5.8.4. Suppose U ⊂ Rn is open and bounded with a C 1

boundary. Then u : U → R is Lipschitz continuous on U if and only
if u ∈W 1,∞(U). I.e.,

u ∈ C 0,1(Ū)⇔ u ∈W 1,∞(U).

Note. Similarly, if U ⊂ Rn is open (not necessarily bounded), then
u is locally Lipschitz continuous on U if and only if u ∈W 1,∞

loc (U).

Theorem 5.8.5. Suppose U ⊂ Rn is open (not necessarily
bounded), and Reg (W 1,p) > 0. If u ∈W 1,p

loc (U), then u is
(classically) differentiable at a.e. ~x ∈ U, and its classical gradient is
equal to its weak gradient at a.e. ~x ∈ U.



Difference Quotients

As a consequence of the last two theorems, we have the following:

Theorem 5.8.6. (Rademacher’s Theorem) Suppose U ⊂ Rn is
open (not necessarily bounded). If u is locally Lipschitz continuous
in U, then u is (classically) differentiable at a.e. ~x ∈ U.



The Space H−1

Let U ⊂ Rn be open (not necessarily bounded).

(i) We denote by H−1(U) the dual space of H1
0 (U).

(ii) Recall that we denote the action of u∗ ∈ H−1(U) on
u ∈ H1

0 (U) by 〈u∗, u〉, and also

‖u∗‖H−1(U) = sup
‖u‖H1(U)≤1

|〈u∗, u〉|.

(iii) According to the Riesz Representation Theorem, since H1
0 (U)

is a Hilbert space, we have

H1
0 (U)

i .i .
= H−1(U).

Nonetheless, we have the strict inclusions

H1
0 (U) ( L2(U) ( H−1(U).

The first inclusion is clear; the second will be clear from our next
theorem.



The Space H−1

Recall that it’s clear that L2(U) ⊂ H−1(U) (non-strict inclusion) in
the following sense: given any u ∈ L2(U) we can define
u∗ ∈ H−1(U) by setting

〈u∗, v〉 = (u, v)L2(U)

for all v ∈ H1
0 (U). Then

‖u∗‖H−1(U) = sup
‖v‖H1(U)≤1

|(u, v)L2(U)| ≤ sup
‖v‖H1(U)≤1

‖u‖L2(U)‖v‖L2(U)

≤‖u‖L2(U).



The Space H−1

Theorem 5.9.1. Let U ⊂ Rn be open (not necessarily bounded).

(i) If f ∈ H−1(U), then there exist {f i}ni=0 ⊂ L2(U) so that

〈f , v〉 =

∫
U
f 0v +

n∑
i=1

f ivxid~x , (*)

for all v ∈ H1
0 (U).

(ii) If f ∈ H−1(U), then

‖f ‖H−1(U) = inf
{f i}n

i=0⊂L2(U)

satisfying (∗)

(∫
U

n∑
i=0

|f i |2
)1/2

.

(iii) For all v ∈ L2(U) ⊂ H−1(U) and u ∈ H1
0 (U),

〈v , u〉 = (v , u)L2(U).



The Space H−1

Note. When (*) holds, we typically write

f = f 0 −
n∑

i=1

f ixi .

This is clearly motivated by the idea of integrating by parts, though
the f i are not generally even weakly differentiable.


