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1 Overview

In these notes we consider the three main aspects of ODE analysis: (1) existence theory,
(2) uniqueness theory, and (3) stability theory. In our study of existence theory we ask the
most basic question: are the ODE we write down guaranteed to have solutions? Since in
practice we solve most ODE numerically, it’s possible that if there is no theoretical solution
the numerical values given will have no genuine relation with the physical system we want
to analyze. In our study of uniqueness theory we assume a solution exists and ask if it is the
only possible solution. If we are solving an ODE numerically we will only get one solution,
and if solutions are not unique it may not be the physically interesting solution. While
it’s standard in advanced ODE courses to study existence and uniqueness first and stability
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later, we will start with stability in these note, because it’s the one most directly linked
with the modeling process. The question we ask in stability theory is, do small changes in
the ODE conditions (initial conditions, boundary conditions, parameter values etc.) lead to
large changes in the solution? Generally speaking, if small changes in the ODE conditions
lead only to small changes in the solution we say the solution is stable.

2 Stability

In order to gain some insight into what stability is, we will consider the equation of a simple
undamped pendulum,

d2θ

dt2
= −g

l
sin θ; θ(0) = θ0; θ′(0) = ω0, (2.1)

where l denotes the length of the pendulum, g denotes the acceleration due to gravity at
the earth’s surface, and θ(t) is the pendulum’s angle of displacement from the vertical. (A
derivation of this equation is given in [H.2].) In order to solve equation (2.1) with MATLAB,
we must first write it as a first order system. Taking y1 = θ and y2 = dθ

dt
, we have

dy1

dt
= y2; y1(0) = θ0,

dy2

dt
= − g

l
sin y1; y2(0) = ω0. (2.2)

Taking l = 1 and g = 9.81 we will store this equation in the MATLAB M-file pendode.m,

function yprime = pendode(t,y);
%PENDODE: Holds ODE for pendulum equation.
g = 9.81; l = 1;
yprime = [y(2);-(g/l)*sin(y(1))];

and solve it with the M-file pend.m,

function f = pend(theta0,v0);
%PEND: Solves and plots ODE for pendulum equation
%Inputs are initial angle and initial angular velocity
y0 = [theta0 v0];
tspan = [0 5];
[t,y] = ode45(@pendode,tspan,y0);
plot(y(:,1),y(:,2));

(These files are both available on the web site [H.1].) Taking initial angle π/4 and initial
velocity 0 with the command pend(pi/4,0), leads to Figure 2.1 (I’ve added the labels from
MATLAB’s pop-up graphics window).

Notice that time has been suppressed and the two dependent variables y1 and y2 have
been plotted in what we refer to as a phase portrait. Beginning at the initial point θ0 = π

4
,
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Figure 2.1: Pendulum motion for the case θ0 = π
4

and ω0 = 0.

ω0 = 0 (the right-hand tip of the football), we observe that angular velocity becomes negative
(the pendulum swings to the left) and angle decreases. At the bottom of the arc, the angle
is 0 but the angular velocity is at a maximum magnitude (though negatively directed),
while at the left-hand tip of the football the object has stopped swinging (instantaneously),
and is turning around. The remainder of the curve corresponds with the object’s swinging
back to its starting position. In the (assumed) absence of air resistance or other forces,
the object continues to swing like this indefinitely. Alternatively, taking initial angle 0 and
initial velocity 10 with the command pend(0,10) leads to Figure 2.2. Observe that in this
case angular velocity is always positive, indicating that the pendulum is always swinging in
the same (angular) direction: we have started it with such a large initial velocity that it’s
looping its axis.

Now that we have a fairly good idea of how to understand the pendulum phase diagrams,
we turn to the critical case in which the pendulum starts pointed vertically upward from
its axis (remember that we have assumed it is attached to a rigid rod). After changing the
variable tspan in pend to [0, 20] (solving now for 20 seconds), the command pend(pi,0) leads
to Figure 2.3. In the absence of any force other than gravity, we expect our model to predict
that the pendulum remains standing vertically upward. (What could possibly cause it to
fall one way rather than the other?) What we find, however, is that our model predicts that
it will fall to the left and then begin swinging around its axis.

Consider finally a change in this last initial data of one over one trillion (10−12 =
.000000000001). The MATLAB command pend(pi+1e-12,0) produces Figure 2.4. We see
that with a change in initial data as small as 10−12 radians, the change in behavior is enor-
mous: the pendulum spins in the opposite direction. We conclude that our model, at least
as it is solved on MATLAB, fails at the initial data point (π, 0). In particular, we say that
this point is unstable.
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Figure 2.2: Pendulum motion for the case θ0 = 0 and ω0 = 10 s−1.
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Figure 2.3: Pendulum motion for the case θ0 = π and ω0 = 0 s−1.
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Figure 2.4: Pendulum motion for the case θ0 = π + 10−12 and ω0 = 0 s−1.

In what follows we will carry out a systematic development of some of the main ideas in
stability theory.

2.1 The Phase Plane

Example 2.1. For systems of two first-order differential equations such as (2.2), we can
study phase diagrams through the useful trick of dividing one equation by the other. We
write,

dy2

dy1
=

dy2

dt
dy1

dt

=
−g

l
sin y1

y2
,

(the phase-plane equation) which can readily be solved by the method of separation of
variables for solution

y2
2

2
=

g

l
cos y1 + C. (2.3)

We see that each value of the constant C gives a relationship between y1 and y2, which we
refer to as an integral curve. At t = 0, x1(0) = θ0 and x2(0) = ω0, fixing C. We will create
a phase plane diagram with the M-file penphase.m (available at [H.1]):

function f = penphase(theta,w0);
%PENPHASE: Plots phase diagram for
%pendulum equation with initial angle theta
%and initial angular velocity w0.
g = 9.81; l = 1.0;
C = w0ˆ2/2 - (g/l)*cos(theta);
if C > g/l
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y = linspace(-pi,pi,50);
else
maxtheta = acos(-C*l/g); %Maximum value of theta
y = linspace(-maxtheta,maxtheta,50);
end
up = sqrt(2*g/l*cos(y)+2*C);
down = -sqrt(2*g/l*cos(y)+2*C);
plot(y,up);
hold on
plot(y,down);

Typing in sequence penphase(pi/12,0), penphase(pi/4,0), penphase(pi/2,0), penphase(pi,0),
penphase(pi/4,6), we create the phase plane diagram given in Figure 2.5. Though time has
been suppressed here, we can determine the direction in which solutions move along these
integral curves by returning to the original system. From the equation

dy1

dt
= y2,

we see that for y2 > 0 values of y1(t) are increasing, and so the direction is to the right. On
the other hand, for y2 < 0, values of y1(t) are decreasing, and so the direction is to the left.
We can conclude that as time progresses solutions move clockwise about (0, 0).
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Figure 2.5: Phase plane diagram for a simple pendulum (Example 3.1).

The point (θ0, ω0) = (0, 0) corresponds with the pendulum’s hanging straight down, while
the points (θ0, ω0) = (π, 0) and (θ0, ω0) = (−π, 0) both correspond with the pendulum’s
standing straight up above its axis. Notice that at each of these critical or equilibrium
points our model analytically predicts that the pendulum will not move. For example, at
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(θ0, ω0) = (0, 0) we find from (2.2) that dy1

dt
= dy2

dt
= 0: the angle and angular velocity are

both zero, so the pendulum remains at rest. The curve that connects the points (−π, 0)
and (π, 0) separates the phase plane into its two parts: the trajectories inside this curve
correspond with the pendulum’s swinging back and forth, while the trajectories outside this
curve correspond with the pendulum’s swinging entirely around its axis. We refer to this
curve as a separatrix for the system. △
Definition 2.1. (Equilibrium point) For an autonomous system of ordinary differential
equations

d~y

dt
= ~f(~y), ~y =











y1

y2
...

yn











, ~f =











f1

f2
...

fn











, (2.4)

we refer to any point ~ye so that ~f(~ye) = ~0 as an equilibrium point.

Typically, equilibrium points govern long time behavior of physical models. In particular,
solutions often approach (or remain near) stable equilibrium points as time gets large.

Returning to our pendulum analysis, we note that if we perturb the initial point (0, 0)
a little (by pushing the pendulum slightly to the right or left), the pendulum’s behavior
changes only slightly: if we push it one millimeter to the right, it will swing back and forth
with maximum displacement one millimeter. On the other hand, as we have seen, if we
perturb the initial point (π, 0) the pendulum’s behavior changes dramatically. We say that
(0, 0) is a stable equilibrium point and that (π, 0) and (−π, 0) are both unstable equilibrium
points. More precisely, we say that the point (0, 0) is orbitally stable, which signifies that
solutions don’t actually approach it, but rather remain near it.

Definition 2.2. (Stability) An equilibrium point ~ye for (2.4) is called stable if given any
ǫ > 0 there exists δ(ǫ) > 0 so that

|~y(0) − ~ye| < δ(ǫ) ⇒ |~y(t) − ~ye| < ǫ for all t > 0.

Definition 2.3. (Asymptotic stability.) An equilibrium point ~ye for (2.4) is called asymp-
totically stable if it is stable and additionally there exists some δ0 > 0 so that

|~y(0) − ~ye| < δ0 ⇒ lim
t→∞

~y(t) = ~ye.

(These definitions can be extended to the case of non-autonmous systems, and to more
general solutions such as periodic solutions, but we won’t pursue that here.)

Before leaving our pendulum example, we consider a rigorous procedure for establishing
the existence of orbits (closed curves) in the phase plane. (I.e., a method that won’t require
MATLAB.) Recalling that our pendulum equation, in its original form, is

d2θ

dt2
= −g

l
sin θ,
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we consider the class of second order ODE with the form

y′′ + V ′(y) = 0. (2.5)

For example, the pendulum equation has this form with y = θ and V (y) = −g
l
cos θ. Pro-

ceeding as we did with the pendulum equation, we can write y1 = y and y2 = y′, so that
(2.5) becomes the first order system

y′
1 = y2

y′
2 = − V ′(y1),

with the associated phase plane equation

dy2

dy1

= −V ′(y1)

y2

.

Separating variables and integrating, we find

y2
2

2
+ V (y1) = E0 = constant, (2.6)

where the constant has been denoted by E0 in recognition of the fact that the left hand side
of (2.6) has the general form of kinetic energy plus potential energy, and indeed this is what
the terms correspond with in many applications. If we now return to the y variable, we have
the first order equation

dy

dt
= ±

√

2(E0 − V (y)),

for which the right hand side is defined so long as E0 ≥ V (y). Recalling that the phase plane
in this case consists of a plot of dy

dt
versus y, we see that there is a curve in the phase plane

at the values y for which E0 ≥ V (y), and that by symmetry the curve will look exactly the
same for dy

dt
> 0 as it does for dy

dt
< 0. This situation is depicted graphically in Figure 2.6,

where for this choice of V (y) there is no curve between y1 and y2, and the two symmetric
curves between y2 and y3 form a closed curve. Note that the closed curve corresponds with
the constant E0, and as with our pendulum example, we get a different integral curve for
each value of E0.
Example 2.1 cont. As a final remark on Example 3.1, we will apply the above consid-
erations to the pendulum equation. In this case V (y) = −(g/l) cos(y), which has a local
minimum at −g/l, as depicted in Figure 2.7. (Keep in mind that we know from Example
2.10 that the potential energy for the pendulum is actually P (y) = mgl(1 − cos y), which
is always positive.) We see, then, that for E0 < −g/l there is no curve in the phase plane,
while for each E0 satisfying −g/l < E0 < g/l there is precisely one closed orbit. For E0 > g/l
there are two phase plane curves, each defined for all values of y, one that is always positive
and one that is always negative. △
Example 2.2. Find all equilibrium points for the SIR model

dS

dt
= − aSI; S(0) = S0

dI

dt
= aSI − bI, I(0) = I0,
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and use a phase plane analysis to determine whether or not each is stable. (Observe that
since the variable R does not appear in either of these equations, we are justified in dropping
off the equation for R. We recover R from the relation R = N − S − I, where N is the total
number of individuals in the population.)

We begin by searching for equilibrium points (Se, Ie), which satisfy

aSeIe = 0

aSeIe − bIe = 0.

From these equations, we can conclude Ie = 0 and Se can be any number, though since it
represents a population we will keep it positive. The phase plane equation is

dI

dS
= −aSI − bI

aSI
= −1 +

b

aS
,

which can be solved by separation of variables. We find

I(S) = −S +
b

a
ln S + C.

It’s clear from the phase plane equation that the only critical point for I(S) is Sc = b
a
, and

that this corresponds with a maximum value. In addition to this, for any values of C, we
have the limits

lim
S→0+

I(S) = −∞; lim
S→∞

I(S) = −∞,

which shows that if I(b/a) > 0 then there will be values SR > b/a and SL < b/a so that
I(SR) = I(SL) = 0. (If I(b/a) ≤ 0 there is no infection.) Finally, it’s clear from the first
equation S ′ = −aSI that as long as the populations S and I are both positive, S ′ < 0,
which means arrows on our trajectories move to the left. Combining these observations, we
have Figure 2.8. Suppose now that the initial values (S0, I0) are near an equilibrium point
(Se, 0) for which Se > b

a
. In this case the solution will follow a trajectory up and to the

left, moving away from the initial value. We conclude that all such equilibrium points are
unstable. What this means physically is that if the susceptible population is Se > b

a
, then if

a single person becomes infected the number of infected people will begin to grow. On the
other hand, if the initial values (S0, I0) are near an equilibrium point (Se, 0) for which Se < b

a
,

we see that the solution will follow a trajectory that returns to a nearby equilibrium point
(Sn, 0). We conclude that these equilibrium points are stable, though not asymptotically
stable. Physically, this means that if the susceptible population is Se < b

a
, then if a single

person is infected, or if a small number of people are infected, the infection will not spread.
Technically, the equilibrium point ( b

a
, 0) is unstable, but only because mathematically we can

think of negative-population perturbations. Note also that though points just to the right
of ( b

a
, 0) are technically unstable, they do not correspond with physically unstable behavior.

That is, if we are to the right of b
a
, but quite close to it, the number of infected people will

only increase a little before dropping off again. △

2.2 Linearization

In this section, we will consider a method for greatly simplifying the stability analysis for
nonlinear systems of ODE. It should be stressed, however, at the outset that the method
introduced in this section is not rigorous without further work. (See Subsection 2.9.)
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Example 2.1 cont. We return once again to the pendulum equation from Example 3.1.
In general, we can study stability without solving equations quite as complicated as (2.3).
Suppose we want to analyze stability at the point (0, 0). We first recall the Taylor expansion
of sin y near y = 0,

sin y = y − y3

3!
+

y5

5!
+ ...

For y near 0, higher powers of y are dominated by y, and we can take the (small angle)
approximation, sin y ∼= y, which leads to the linearized equations,

dy1

dt
= y2

dy2

dt
= − g

l
y1. (2.7)

(That is, the right-hand sides of (2.7) are both linear, which will always be the case when
we take the linear terms from a Taylor expansion about an equilibrium point.) Of course
it is precisely here, in dropping off these nonlinear terms, that we have lost rigour, and to
have a complete theory we will have to say more about them later. For now, though, we
will consider what can be said about the linear system. The phase plane equation associated
with (2.7) is

dy2

dy1
=

dy2

dt
dy1

dt

=
−g

l
y1

y2
,

with solution
y2

2

2
+

g

l
· y2

1

2
= C,
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which corresponds with ellipses centered at (0, 0) with radial axis lengths
√

2C and
√

2lC/g
(see Figure 2.9). Returning to equations (2.7), we add direction along the ellipses by observ-
ing from the first equation that for y2 > 0, y1is increasing, and for y2 < 0, y1 is decreasing.
The directed sections of integral curves along which the object moves are called trajectories.
Our stability conclusion is exactly the same as we drew from the more complicated Figure
2.5. In particular, in the case that we have closed loops about an equilibrium point, we say
the point is orbitally stable.

2C

2lC/g

y2

y1

Figure 2.9: Phase plane diagram near the equilibrium point (0, 0).

For the point (π, 0) we first make the change of variables,

y1 =π + z1

y2 =0 + z2,

and observe that in the variables z1 and z2 the equilibrium point is again at (0, 0). In these
variables, our system becomes,

dz1

dt
= z2

dz2

dt
= − g

l
sin(π + z1).

Recalling the Taylor expansion of sin z1 at the point π,

sin(π + z1) = sin π + (cos π)z1 −
sin π

2
z2
1 + ...,

we arrive at the new linearized equation,

dz1

dt
= z2

dz2

dt
=

g

l
z1.
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Proceeding exactly as above we again write the phase plane equation,

dz2

dz1

=
dz2

dt
dz1

dt

=
g
l
z1

z2

,

which can be solved by the method of separation of variables for implicit solution,

−z2
2

2
+

g

l

z2
1

2
= C,

which corresponds with hyperbolas (see Figure 2.10). Observe that in this case all trajectories
move first toward the equilibrium point and then away. We refer to such an equilibrium point
as an unstable saddle. △

z1

z2

y2= g/l y1

Figure 2.10: Phase plane diagram near the equilibrium point (π, 0).

Example 2.3. As a second example of stability analysis by linearization, we will consider
the Lotka–Volterra predator–prey equations,

dx

dt
= ax − bxy

dy

dt
= − ry + cxy. (2.8)

First, we find all equilibrium points by solving the system of algebraic equations,

ax − bxy = 0

−ry + cxy = 0.

We find two solutions, (x1, y1) = (0, 0) and (x2, y2) = ( r
c
, a

b
). The first of these corresponds

with an absence of both predator and prey, and the associated linear equation can be obtained
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simply by observing that the terms −bxy and cxy are higher order. We obtain the linear
system

x′ = ax

y′ = − ry,

for which the phase plane equation is

dy

dx
= − ry

ax
.

Solving this by separation of variables, we find

a
dy

y
= −r

dx

x
⇒ a ln |y| = −r ln |x| + C ⇒ |y| = K|x|−r/a,

where K = eC/a is a positive constant. If we assume that the initial populations x(0) = x0

and y(0) = y0 are both positive, then the integral curves are described by

y(x) = Kx−r/a,

which have the general form of the curve depicted in Figure 2.11. We conclude that the
equilibrium point (0, 0) is unstable.

x

y

Figure 2.11: Phase plane integral curves for the Lotka-Volterra equation near (0, 0).

The second equilibrium point, ( r
c
, a

b
), is more interesting; it is a point at which the

predator population and the prey population live together without either one changing. If
this second point is unstable then any small fluctuation in either species will destroy the
equilibrium and one of the populations will change dramatically. If this second point is
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stable then small fluctuations in species population will not destroy the equilibrium, and we
would expect to observe such equilibria in nature. In this way, stability typically determines
physically viable behavior.

In order to study the stability of this second point, we first linearize our equations by
making the substitutions

x =
r

c
+ z1

y =
a

b
+ z2.

Substituting x and y directly into equation (2.8) we find

dz1

dt
= a(

r

c
+ z1) − b(

r

c
+ z1)(

a

b
+ z2) = −br

c
z2 − bz1z2

dz2

dt
= − r(

a

b
+ z2) + c(

r

c
+ z1)(

a

b
+ z2) =

ca

b
z1 + cz1z2.

(Observe that in the case of polynomials a Taylor expansion emerges from the algebra, saving
us a step.) Dropping the nonlinear terms, we arrive at our linear equations,

dz1

dt
= − br

c
z2

dz2

dt
=

ca

b
z1.

Proceeding as in the previous case, we solve the phase plane equation,

dz2

dz1
=

ca
b
z1

− br
c
z2

,

for implicit solutions,
ca

b

z2
1

2
+

br

c

z2
2

2
= C,

which correspond with ellipses and conseqently orbital stability. Just as in the case of the
pendulum equation, these orbits correspond with periodic behavior. △

2.3 Linearization and the Jacobian Matrix

In this Section we will develop a more systematic method for obtaining the linear equation
associated with an equilibrium point. We begin by recalling what it means for a function of
two variables to be differentiable.

Definition 2.4. We say that f(x, y) is differentiable at the point (x0, y0) if the partial
derivatives fx(x0, y0) and fy(x0, y0) both exist, and additionally

lim
(h,k)→(0,0)

|f(x0 + h, y0 + k) − f(x0, y0) − fx(x0, y0)h − fy(x0, y0)k|√
h2 + k2

= 0.
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The derivative of f(x, y) is the gradient vector

∇f = [fx, fy].

Equivalently, f(x, y) is differentiable at (x0, y0) if there exists some ǫ = ǫ(h, k; x0, y0) so that

f(x0 + h, y0 + k) = f(x0, y0) + fx(x0, y0)h + fy(x0, y0)k + ǫ(h, k; x0, y0)
√

h2 + k2,

where ǫ → 0 as (h, k) → (0, 0).
Consider now a system of two first order autonomous ODE

y′
1 = f1(y1, y2)

y′
2 = f2(y1, y2),

and let (ŷ1, ŷ2) denote an equilibrium point for this system; i.e., f1(ŷ1, ŷ2) = f2(ŷ1, ŷ2) =
0. If f1(y1, y2) is differentiable at the point (ŷ1, ŷ2) then if, referring to our definition of
differentiability, we take ŷ1 = x0, ŷ2 = y0, y1 = x0 + h, and y2 = y0 + k, we have

f1(y1, y2) = f1(ŷ1, ŷ2)+
∂f1

∂y1
(ŷ1, ŷ2)(y1− ŷ1)+

∂f1

∂y2
(ŷ1, ŷ2)(y2− ŷ2)+ǫ

√

(y1 − ŷ1)2 + (y2 − ŷ2)2.

We observe now that f(ŷ1, ŷ2) = 0, and that the term involving ǫ is precisely the type of
higher order term that we drop off in the linearization process. We conclude that for (y1, y2)
near (ŷ1, ŷ2),

f1(y1, y2) ≈
∂f1

∂y1
(ŷ1, ŷ2)(y1 − ŷ1) +

∂f1

∂y2
(ŷ1, ŷ2)(y2 − ŷ2).

Proceeding similarly now for f2, we find that the linear system associated with this equilib-
rium point is

y′
1 =

∂f1

∂y1

(ŷ1, ŷ2)(y1 − ŷ1) +
∂f1

∂y2

(ŷ1, ŷ2)(y2 − ŷ2)

y′
2 =

∂f2

∂y1
(ŷ1, ŷ2)(y1 − ŷ1) +

∂f2

∂y2
(ŷ1, ŷ2)(y2 − ŷ2).

In system form, with perturbation variable

~z =

(

y1 − ŷ1

y2 − ŷ2

)

,

this becomes
d~z

dt
= ~f ′(ŷ1, ŷ2)~z, (2.9)

where ~f ′ is the Jacobian matrix

~f ′(ŷ1, ŷ2) =

(

∂f1

∂y1
(ŷ1, ŷ2)

∂f1

∂y2
(ŷ1, ŷ2)

∂f2

∂y1
(ŷ1, ŷ2)

∂f2

∂y2
(ŷ1, ŷ2)

)

.
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Students may recall from calculus that this matrix is precisely what is meant by the derivative
of a two-component vector function that depends on two variables. Hence the prime notation.
For our purposes this prime notation will suffice, and it certainly has the advantage of
familiarity, but it’s generally better to use an operator notation for functions of multiple
variables. For example, the standard PDE reference [Evans] uses D for the Jacobian operator,
so

D~f(ŷ1, ŷ2) =

(

∂f1

∂y1
(ŷ1, ŷ2)

∂f1

∂y2
(ŷ1, ŷ2)

∂f2

∂y1
(ŷ1, ŷ2)

∂f2

∂y2
(ŷ1, ŷ2)

)

.

Example 2.1 revisited. Though the linearization step in Example 2.1 isn’t difficult, it
will be instructive to see what it looks like with the Jacobian. In the current notation the
pendulum system is

y′
1 = y2,

y′
2 = − g

l
sin y1.

That is, f1(y1, y2) = y2 and f2(y1, y2) = −g
l
sin y1. The Jacobian matrix is

~f ′(y1, y2) =

(

0 1
−g

l
cos y1 0

)

.

We immediately see now that for the equilibrium point (0, 0) we have

~f ′(0, 0) =

(

0 1
−g

l
0

)

,

while for the equilibrium point (π, 0) we have

~f ′(π, 0) =

(

0 1
g
l

0

)

.

We see now that in each case (2.9) becomes the same linear system as we derived previously.
△

The simplification in the analysis is more marked in the case of Example 2.3 involving
the Lotka–Volterra model.

Example 2.3 revisited. In the notation of this section the Lotka–Volterra model has the
form

y′
1 = ay1 − by1y2

y′
2 = − ry2 + cy1y2,

from which we see that f1(y1, y2) = ay1 − by1y2 and f2(y1, y2) = −ry1 + cy1y2. The Jacobian
for this system is

~f ′(y1, y2) =

(

a − by2 −by1

cy2 −r + cy1

)

.
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For the two equilibrium points (0, 0) and ( r
c
, a

b
) we have respectively

~f ′(0, 0) =

(

a 0
0 −r

)

,

and

~f ′(
r

c
,
a

b
) =

(

0 − br
c

ac
b

0

)

.

In each case the system (2.9) becomes precisely the linear system analyzed in Example 2.3.
△

More generally, we have the following definition for a function f of n variables. In this
case, it is more convenient to state the definition in a vector form, taking the n independent
variables as the vector ~x = (x1, x2, . . . , xn).

Definition 2.5. We say that a function f of n variables f(~x) is differentiable at the point
~x0 if the first partial derivatives of f all exist, and if

lim
|~h|→0

|f(~x0 + ~h) − f(~x0) −∇f(~x0) · ~h|
|~h|

= 0.

Equivalently, f(~x) is differentiable at ~x0 if there exists some ǫ = ǫ(~h; ~x0) so that

f(~x0 + ~h) = f(~x0) + ∇f(~x0) · ~h + ǫ(~h; ~x0)|~h|,

where ǫ → 0 as |~h| → 0. Here, | · | denotes Euclidean norm, which of course is simply

absolute value when applied to a scalar quantity such as f(~x0 + ~h) − f(~x0) −∇f(~x0) · ~h.

Proceeding similarly as in the case of a system of two equations we find that if the system
of n ODE

d~y

dt
= ~f(~y), ~y, ~f ∈ R

n

is linearized about the equilibrium point ~ye, with perturbation variable ~z = ~y − ~ye, then the
linearized equation is

d~z

dt
= f ′(~y0)~z,

where ~f ′ is the Jacobian of ~f . That is,

~f ′ =











∂f1

∂x1

∂f1

∂x2
· · · ∂f1

∂xn
∂f2

∂x1

∂f2

∂x2
· · · ∂f2

∂xn

...
...

...
...

∂fn

∂x1

∂fn

∂x2
· · · ∂fn

∂xn











. (2.10)

As mentioned above it is often more convenient to replace the notation ~f ′ with the operator
notation D~f .
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Example 2.4. Consider the system of three ODE

y′
1 = ay1(1 −

y1

K
) − by1y2

y′
2 = − ry2 + cy1y2 − ey2y3

y′
3 = − fy3 + gy2y3,

which models a situation in which y1 denotes a prey population, y2 denotes the population
of a predator that preys on y1 and y3 denotes the population of a predator that preys on y2.
Find all equilibrium points (ŷ1, ŷ2.ŷ3) for this system and write down the linearized equation
associated with each.

The equilibrium points for this system satisfy the nonlinear system of algebraic equations

ŷ1[a(1 − ŷ1

K
) − bŷ2] = 0

ŷ2[−r + cŷ1 − eŷ3] = 0

ŷ3[−f + gŷ2] = 0.

Let’s begin with the important case for which the populations are all non-zero, which cor-
responds with a situation in which the populations can mutually coexist. In this case the
third equation gives ŷ2 = f/g, and upon substitution of this into the first equation we find

ŷ1 =
K

a
(a − bf

g
).

And finally, from the third equation we get

ŷ3 =
−r + cK

a
(a − bf

g
)

e
.

For each other equilibrium point at least one of the components will be zero. In the case
that ŷ1 = 0, we have

ŷ2[−r − eŷ3] = 0

ŷ3[−f + gŷ2] = 0,

from which we obtain (0, 0, 0), (0, f
g
,−r

e
), the second of which is irrelevant since one of the

populations is negative. In the event that ŷ2 = 0, we have from the third equation that
ŷ3 = 0 and

ŷ1[a(1 − ŷ1

K
)] = 0.

Since all cases for which ŷ1 have already been considered, we need only consider ŷ1 6= 0, and
here we conclude the new equilibrium point (K, 0, 0). Finally, if ŷ3 = 0, we have

ŷ1[a(1 − ŷ1

K
) − bŷ2] = 0

ŷ2[−r + cŷ1] = 0.
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At this point we have already considered all cases for which either ŷ1 = 0 or ŷ2 = 0, and so
we need only consider the cases in which neither of these populations is 0. We obtain the

new equilibrium point ( r
c
,

a− ar
cK

b
, 0). Altogether, we have four physical equilibrium points

(
K

a
(a − bf

g
),

f

g
,
−r + cK

a
(a − bf

g
)

e
), (0, 0, 0), (K, 0, 0), (

r

c
,
a − ar

cK

b
, 0).

The Jacobian for this system is

~f ′(ŷ1, ŷ2, ŷ3) =





a − 2a
K

ŷ1 − bŷ2 −bŷ1 0
cŷ2 −r + cŷ1 − eŷ3 −eŷ2

0 gŷ3 −f + gŷ2



 . (2.11)

The linearized equations are then

~z′ = f ′(ŷ1, ŷ2, ŷ3)z,

with the equilibrium point of interest substituted in for (ŷ1, ŷ2, ŷ3). (We will evaluate the
Jacobian matrix at these values and determine whether or not these equilbrium points are
stable in Subsection 2.6.) △

I’ll close this section by reminding students of the role played by the Jacobian in multi-
variate calculus as the derivative of a vector function of the vector variable.

Definition 2.6. We say that a vector function ~f of n variables ~f(~x) is differentiable at the

point ~x0 if the first partial derivatives of all components of ~f all exist, and if

lim
|~h|→0

|~f(~x0 + ~h) − ~f(~x0) − ~f ′(~x0)~h|
|~h|

= 0.

Equivalently, ~f(~x) is differentiable at ~x0 if there exists some ~ǫ = ~ǫ(~h; ~x0) so that

~f(~x0 + ~h) = ~f(~x0) + ~f ′(~x0)~h + ~ǫ(~h; ~x0)|~h|,

where |~ǫ| → 0 as |~h| → 0. Here, | · | denotes Euclidean norm.

In this definition, ~f ′(~x0) is precisely the Jacobian defined in (2.10). Since this is a matrix

the expression ~f ′(~x0)~h denotes a matrix multiplying a vector. In this way, the derivative can
be regarded as an operator (a matrix is a linear operator) or as a second order tensor.

2.4 Brief Review of Linear Algebra

In this section we will review some ideas from linear algebra that will be important in the
development of a more general method for analyzing the stability of equilibrium points. We
begin with the determinant of a matrix. First, recall that for a general 2 × 2 matrix

A =

(

a11 a12

a21 a22

)

,
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the inverse is

A−1 =
1

a11a22 − a12a21

(

a22 −a12

−a21 a11

)

.

Clearly, A−1 exists if and only if this difference a11a22−a12a21 6= 0. This difference is referred
to as the determinant of A, and we write

det A = a11a22 − a12a21.

More generally, we have the following definition.

Definition 2.7. For an n× n matrix A, with entries {aij}, i = 1, 2, ..., n, j = 1, 2, ..., n, the
determinant is defined as

det A =
∑

permutations

(−1)αpa1p1
a2p2

· · ·anpn
, (2.12)

where the sum is taken over all permutations (p1, p2, . . . , pn) of (1, 2, . . . , n) and αp denotes
the minimum number of exchanges required to put (p1, p2, . . . , pn) in the form (1, 2, . . . , n).

For example, in the case that A is a 2× 2 matrix, we can easily list all possible permuta-
tions of the indices (1, 2) as {(1, 2), (2, 1)}. For the first of these α = 0, while for the second
α = 1. In this case, the sum (2.12) becomes

(−1)0a11a22 + (−1)1a12a21 = a11a22 − a12a21.

As a second example, consider the case of a 3× 3 matrix for which the possible permuations
of the indices (1, 2, 3) are {(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)}. (In general
there will be n! permutations.) In this case the sum (2.12) becomes

(−1)0a11a22a33 + (−1)1a11a23a32 + (−1)1a12a21a33

+(−1)2a12a23a31 + (−1)2a13a21a32 + (−1)1a13a22a31

= a11a22a33 + a12a23a31 + a13a21a32 − (a11a23a32+a12a21a33 + a13a22a31).

Fortunately, there are some properties of determinants that allow us to avoid explicitly
using (2.12). In particular, it can be shown that the determinant of an n × n matrix can
always be computed as a sum of determinants of (n − 1) × (n − 1) matrices. In this way,
the calculation of any general n × n matrix can be reduced (eventually) to the sum of
determinants of 2×2 matrices. Before looking at the general formula, let’s consider the case
n = 3, for which we can write

det A = a11 det

(

a22 a23

a32 a33

)

− a21 det

(

a12 a13

a32 a33

)

+ a31 det

(

a12 a13

a22 a33

)

,

or
det A = a11D11 − a21D21 + a31D31,

where Dij denotes the determinant of the matrix created by eliminating the ith row and jth

column of A. If we define the cofactor of element aij as

Aij = (−1)i+jDij,
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then

det A =
3
∑

i=1

ai1Ai1.

We call this method cofactor expansion along the first column. In fact, the same considera-
tions are true for any n×n matrix and for expansion along any row or column, and we have
the following proposition.

Proposition 2.8. For any n × n matrix A with entries {aij}, the determinant can be
computed either as

det A =
n
∑

i=1

aijAij ,

where j denotes any column j = 1, 2, ..., n, or as

det A =
n
∑

j=1

aijAij ,

where i denotes any row i = 1, 2, ..., n.

In the next proposition several important properties of determinants are collected.

Proposition 2.9. If A and B are n × n matrices and c is a constant, then the following
hold:

det(Atr) = det(A) (here, tr denotes transpose)

det(AB) = det(A) det(B)

det(A−1) =
1

det A
(if A is invertible)

det(cA) = cn det A

(A−1)ij =
Aji

det A
.

In the final expression (A−1)ij denotes the element of A−1 in the ith row and jth column, and
Aji is the (transposed) cofactor.

We next review the definitions of linear dependence and linear independence.

Definition 2.10. The set of n vectors ~v1, ~v2, ..., ~vn is said to be linearly dependent if there
exist values c1, c2, ..., cn, not all 0, so that

c1~v1 + c2~v2 + · · ·+ cn~vn = 0.

If the set of vectors is not linearly dependent then it is called linearly independent.

The following theorem is extremely useful.

Theorem 2.11. For an n × n matrix A, the following statements are equivalent.

1. A is invertible.

2. det A 6= 0.
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3. The equation A~v = 0 has only the trivial solution ~v = ~0.

4. The columns of A form a linearly independent set of n vectors.

5. The rows of A form a linearly independent set of n vectors.

Finally, we recall what is meant by an eigenvalue and by an eigenvector, and we review
the method for computing them.

Definition 2.12. For an n × n matrix A, the n × 1 column vector ~v is an eigenvector of A
if ~v 6= ~0 and

A~v = λ~v,

for some real or complex value λ. The value λ is called an eigenvalue for A.

In order to see how to compute the eigenvalues of a matrix A, we write the eigenvalue
problem in the form

(A − λI)~v = 0,

and observe that if the operator (A − λI) is invertible we can compute

~v = (A − λI)−1~0 = ~0,

in which case ~v is not an eigenvector, and consequently λ is not an eigenvalue. We can
conclude from this that λ can only be an eigenvalue of A if the matrix (A − λI) is not
invertible. In fact, it follows from our theorem on invertibility that λ is an eigenvalue of A
if and only if

det(A − λI) = 0.

This last equation is often called the characteristic equation.

2.5 Solving Linear First-Order Systems

The linearization process discussed in Section 2.3 suggests that at least in certain cases the
study of stability can be reduced to the study of linear systems of ODE, which is to say
systems of the form

d~y

dt
= A~y,

where ~y is a column vector with n components and A is an n × n matrix. In light of this,
we need to develop a method for solving such equations.

Example 2.5. Consider again the second linearized equation from Example 2.1 (near the
point (π, 0)),

dy1

dt
= y2

dy2

dt
=

g

l
y1. (2.13)
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Recall that we can solve linear autonomous systems such as (2.13) by substitution. That
is, writing y2 = dy1

dt
from the first equation and substituting it into the second, we have the

second order equation
d2y1

dt2
=

g

l
y1.

Homogeneous constant coefficient equations can be solved through the ansatz (guess) y1(t) =
ert, for which we have r2 − g

l
= 0, or r = ±

√

g
l
. According to standard ODE theory, we

conclude that any solution y1(t) must have the form

y1(t) = C1e
−
√

g

l
t + C2e

√
g

l
t.

In the case of stability, y1(t) is expected to approach 0 as t gets large (or in the case of orbital
stability, at least remain near 0). Since one summand of y1(t) grows exponentially as t gets
large, we conclude that the point under consideration, (π, 0), is unstable.

While the method just discussed is fairly convenient for systems of two equations, it isn’t
efficient for larger systems, and we would like an approach tailored more toward such cases.
Consider, then, the general linear system

d~y

dt
= A~y. (2.14)

Our next goal will be to develop a method for finding general solutions for such systems.
Though we are developing this in the context of stability analysis, this method is of course of
interest in its own right. Motivated by the general idea of our approach for solving a second
order ODE, we proceed by looking for vector solutions of the form

~y = ~veλt,

where ~v denotes a constant vector and the constant multiplying t has been designated as
the Greek letter λ in accordance with fairly standard notation. Upon substitution of ~y into
(2.14), and multiplication on both sides by e−λt, we obtain the linear system of algebraic
equations

A~v = λ~v,

which is an eigenvalue problem (see Subsection 2.4). In the case of (2.13), we have

A =

(

0 1
g
l

0

)

,

for which

det(A − λI) = det

(

−λ 1
g
l

−λ

)

= λ2 − g

l
= 0 ⇒ λ = ±

√

g

l
.

We can determine the eigenvectors associated with these eigenvalues by solving

A~v − λ~v = 0 ⇒
(

∓
√

g
l

1
g
l

∓
√

g
l

)(

v1

v2

)

=

(

0
0

)

⇒ v2 = ±
√

g

l
v1.

Observe, in particular, that though we have two equations, we only get one relation for each
eigenvalue. This means that one component of ~v can be chosen (almost) arbitrarily, which
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corresponds with the observation that if you multiply an eigenvector by a constant, you
will get another (linearly dependent) eigenvector. In this case, let’s choose v1 = 1 for each
eigenvector (recall that we should have two), giving

~v1 =

(

1
−
√

g
l

)

, ~v2 =

(

1
√

g
l

)

.

Here, it is important to observe the distinction between the vector component v1 and the
first eigenvector ~v1. Finally, we can write down the general solution to the ODE system
(2.13)

~y(t) = c1

(

1
−
√

g
l

)

e−
√

g

l
t + c2

(

1
√

g
l

)

e
√

g

l
t.

At this point it is important to understand whether or not every possible solution to
(2.13) can be written in this form. That is, given an arbitrary initial vector

~y =

(

y1(0)
y2(0)

)

,

can we be sure that there exist values c1 and c2 so that

(

y1(0)
y2(0)

)

= c1

(

1
−
√

g
l

)

+ c2

(

1
√

g
l

)

.

Noting that we can rearrange this last equation into the matrix form

(

1 1
−
√

g
l

√

g
l

)(

c1

c2

)

=

(

y1(0)
y2(0)

)

,

we see that c1 and c2 exist if and only if the matrix

(

1 1
−
√

g
l

√

g
l

)

is invertible. According to our theorem on matrix invertibility, we can check this by com-
puting the determinant of this matrix, which is 2

√

g
l
6= 0. And so our general solution will

work for any initial condition. In this case, we find

(

c1

c2

)

=

√

l

4g

( √

g
l

−1
√

g
l

1

)(

y1(0)
y2(0)

)

=

√

l

4g

( √

g
l
y1(0) − y2(0)

√

g
l
y1(0) + y(0)

)

.

The solution to the initial value problem is consequently

~y(t) =
1

2

(

y1(0) −
√

l

g
y2(0)

)

(

1
−
√

g
l

)

e−
√

g

l
t +

1

2

(

y1(0) +

√

l

g
y2(0)

)

(

1
√

g
l

)

e
√

g

l
t.

△
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More generally, for the linear constant-coefficient system of n ODE

d~y

dt
= A~y,

suppose that A has n linearly independent eigenvectors {~vk}n
k=1, with associated eigenvalues

{λk}n
k=1. Our general solution in this case is

~y(t) = c1~v1e
λ1t + c2~v2e

λ2t + · · ·+ cn~vneλnt =
n
∑

k=1

ck~vke
λkt.

As in the case of Example 2.5, if we are given general initial conditions ~y(0), we can write
down a matrix equation for the ck in which the matrix is composed by taking each eigenvector
as a column. According to our theorem on matrix invertibility, the linear independence of
the eigenvectors insures that the matrix will be invertible, and consequently that we will be
able to find values for the ck. Collecting these observations, we have the following theorem.

Theorem 2.13. Suppose A is a constant n × n matrix with n linearly independent eigen-
vectors {~vk}n

k=1 and associated eigenvalues {λk}n
k=1. Then the initial value problem

d~y

dt
= A~y; ~y(0) = ~y0

has a unique solution

~y(t) = c1~v1e
λ1t + c2~v2e

λ2t + · · ·+ cn~vneλnt =

n
∑

k=1

ck~vke
λkt,

where the {ck}n
k=1 are determined by the system of equations

~y0 = c1~v1 + c2~v2 + · · ·+ cn~vn.

Example 2.6. Solve the initial value problem

y′
1 = − y1 + y2

y′
2 = y1 + 2y2 + y3

y′
3 = 3y2 − y3,

subject to y1(0) = y2(0) = 0 and y3(0) = 1.
We begin by writing this system in matrix form ~y′ = A~y, where

A =





−1 1 0
1 2 1
0 3 −1



 .

The eigenvalues of A are roots of the characteristic equation

det(A − λI) = det





−1 − λ 1 0
1 2 − λ 1
0 3 −1 − λ



 = 0.
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If we compute this determinant by the method of cofactor expansion down the first column,
we find

(−1 − λ)((2 − λ)(−1 − λ) − 3) − 1(−1 − λ) = 0 ⇒ λ3 − 7λ + 6 = 0,

where the roots of this cubic polynomial are λ = −2,−1, 3, which are consequently the
eigenvalues of A. For the first of these, the eigenvector equation is





−1 + 2 1 0
1 2 + 2 1
0 3 −1 + 2









v1

v2

v3



 =





0
0
0



 ,

or

v1 + v2 = 0

v1 + 4v2 + v3 = 0

3v2 + v3 = 0.

Observe particularly that if we subtract the first equation from the second we obtain the
third, so the third equation can be regarded as superfluous, giving us the degree of freedom
we expect. If we now choose v1 = 1, we can conclude v2 = −1 and v3 = 3, so that

~v1 =





1
−1
3



 .

Proceeding similarly, we find that the eigenvectors associated with λ2 = −1 and λ3 = 3 are
respectively

~v2 =





1
0
−1



 and ~v3 =





1
4
3



 .

In this way, the general solution for this system is

~y(t) = c1





1
−1
3



 e−2t + c2





1
0
−1



 e−t + c3





1
4
3



 e2t.

In order to find values for c1, c2, and c3, we use the initial conditions, which give the system
P~c = ~y0, where

P =





1 1 1
−1 0 4
3 −1 3



 .

Solving either by row reduction or matrix inversion, we conclude c1 = 1/5, c2 = −1/4, and
c3 = 1/20, which gives

~y(t) =
1

5





1
−1
3



 e−2t − 1

4





1
0
−1



 e−t +
1

20





1
4
3



 e2t.

△
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2.6 Stability and Eigenvalues

Recall from Subsection 2.3 that if ~ye is an equilibrium point for the autonomous ODE system
~y′ = ~f(~y), then the associated linear system is

d~z

dt
= A~z. (2.15)

where A is the Jacobian matrix ~f ′(~ye). We see immediately that ~ze = ~0 is an equilibrium
point for this system, and in fact by our theorem on matrix invertibility that if A is invertible
this will be the only equilibrium point for this system. In this section, we combine elements
of Subsections 2.3, 2.4, and 2.5 to arrive at a general theorem on the stability of ~ze = ~0 as a
solution to ~z′ = A~z. We will begin in the case of two equations, for which it is possible to
relate the spectral result to our phase plane analysis of Subsection 2.1.

Example 2.7. For the ODE system

y′
1 = y2

y′
2 =

g

l
y1,

use eigenvalues to determine whether or not the equilibrium point ~ye = ~0 is stable.
For this system, we have already shown in Subsection 2.5 that that for general initial

values y1(0) and y2(0) the solution is

~y(t) =
1

2

(

y1(0) −
√

l

g
y2(0)

)

(

1
−
√

g
l

)

e−
√

g

l
t +

1

2

(

y1(0) +

√

l

g
y2(0)

)

(

1
√

g
l

)

e
√

g

l
t.

We recall now that according to our definition of stability, ~ye = ~0 will be stable if by choosing
y1(0) and y2(0) so that |~y(0)| > 0 is sufficiently small, we can insure that |~y(t)| remains small
for all t (stability) or decays to 0 as t → ∞ (asymptotic stability). In this case, we can
see from our exact solution that for general values of y1(0) and y2(0) the second summand
in ~y(t) will grow at exponential rate in t, and so no matter how small |~y(0)| > 0 is |~y(t)|
will eventually grow large. Observe particularly, however, that there is one choice of initial
conditions for which this growth will not occur, namely y2(0) = −

√

g
l
y1(0), which specifies

a line through the origin in the phase plane (see Figure 2.12). The critical thing to observe
about this line is that it corresponds precisely with the eigenvector associated with the
negative eigenvalue −

√

g
l
. That is, the eigenvector

(

1
−
√

g
l

)

points in the same direction as does the line described by y2(0) = −
√

g
l
y1(0). (Note that

the small arrow on this line in Figure 2.12 points in the direction of the vector, while the
large arrow points in the direction y1(t) and y2(t) move as t increases.) Likewise, if y2(0) =
√

g
l
y1(0) then the first summand in ~y(t) is 0, and the solution only has a growing term. That

is, the eigenvector associated with the positive eigenvalue
√

g
l

points in a direction of pure
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Figure 2.12: Eigenvectors for the pendulum equation linearized about (π, 0).

growth. This gives the partial phase plane diagram depicted in Figure 2.12, from which we
conclude that the equilibrium point (0, 0) is an unstable saddle for this system. △

We have seen in Subsection 2.5 that if {~vk}n
k=1 denotes a linearly independent set of

eigenvectors for A, the general solution to ~y′ = A~y has the form

~y(t) =

n
∑

k=1

ck~vke
λkt.

In this way, the general solution for the linear perturbation variable z of (2.15) is

~z(t) =

n
∑

k=1

ck~vke
λkt,

where {vk}n
k=1 are eigenvectors of the Jacobian matrix (assumed linearly independent) and

{λk}n
k=1 denote the corresponding eigenvalues. In this way it’s clear that |~z| → 0 as t → ∞

(i.e., asymptotic stability) if and only if the eigenvalues all have negative real part. Also, it’s
clear that if any of the eigenvalues have positive real part then for general initial conditions
|~z(t)| → ∞ as t → ∞. Accordingly, we have the following theorem.

Theorem 2.14. (Linear ODE Stability) For the linear first order constant coefficient system
of ODE

d~y

dt
= A~y, ~y ∈ R

n, A ∈ R
n×n,

the zero vector ~ye ≡ 0 is stable or unstable as follows:

1. If all eigenvalues of A have nonpositive real parts, and all those with zero
real parts are simple, then ~ye = 0 is stable.
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2. If and only if all eigenvalues of A have negative real parts, then ~ye = 0 is
asymptotically stable.

3. If one or more eigenvalues of A have a postive real part, then ~ye = 0 is
unstable.

Definition 2.15. For the general autonomous ODE,

d~y

dt
= ~f(~y), ~y, ~f ∈ R

n, (2.16)

with equilibrium point ~ye, if the linearization of (2.16) about ~ye yields a linear equation for
which the zero vector is stable, then we refer to ~ye as linearly stable.

In the case of a system of two equations, we can say more. Proceeding as in Example
2.7, we can associate partial phase diagrams with eigenvalues in the following way. Let A
be a 2 × 2 matrix with eigenvalues λ1 and λ2. Then the equilibrium point (0, 0) can be
categorized as follows1:

1. If λ1 < λ2 < 0 then (0, 0) is asymptotically stable and we refer to it as a sink.

2. If 0 < λ1 < λ2 then (0, 0) is unstable and we refer to it as a source.

3. If λ1 < 0 < λ2 then (0, 0) is unstable and we refer to it as a saddle.

4. If λ1 = −ib, λ2 = +ib then (0, 0) is stable and we refer to it as a center or orbit.

5. If λ1 = −a− ib, λ2 = −a + ib (for a > 0) then (0, 0) is asymptotically stable and we refer
to it as a stable spiral.

6. If λ1 = a − ib, λ2 = a + ib (for a > 0) then (0, 0) is unstable and we refer to it as an
unstable spiral.

7. If λ1 = λ2 < 0, and the single eigenvalue has two linearly independent eigenvectors then
(0, 0) is asymptotically stable and we refer to it as a stable proper node.

8. If λ1 = λ2 < 0, and the single eigenvalue does not have two linearly independent eigen-
vectors then (0, 0) is asymptotically stable and we refer to it as a stable improper node.

9. If λ1 = λ2 > 0, and the single eigenvalue has two linearly independent eigenvectors then
(0, 0) is unstable and we refer to it as an unstable proper node.

10. If λ1 = λ2 > 0, and the single eigenvalue does not have two linearly independent
eigenvectors then (0, 0) is unstable and we refer to it as an unstable improper node.

The six most common cases are depicted in Figure 2.13.
Example 2.8. Find and characterize all equilibrium points for the competition model

dy1

dt
= r1y1(1 −

y1 + s1y2

K1

)

dy2

dt
= r2y2(1 −

y2 + s2y1

K2

),

assuming all parameter values are positive.

1This terminology is not universal; we follow [BD]
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Sink (stable)

λ < λ < 01 2

Source (unstable)

0 < λ < λ1 2

Saddle (unstable)

λ < 0 < λ1 2

λ  = 1 −ib,λ  = +ib2

Orbit (stable)

λ  =2λ  =1 −a−ib, −a+ib

Stable Spiral Unstable Spiral

λ  =1 +a−ib,λ  =2 +a+ib

Figure 2.13: Eight common types of equilibrium points for systems of 2 equations.

The equilibrium points (ŷ1, ŷ2) satisfy the algebraic system of equations

r1ŷ1(1 − ŷ1 + s1ŷ2

K1
) = 0

r2ŷ2(1 − ŷ2 + s2ŷ1

K2
) = 0.

For the first of these equations we must have either ŷ1 = 0 or ŷ1 = K1 − s1ŷ2, while for
the second we must have either ŷ2 = 0 or ŷ2 = K2 − s2ŷ1. In this way, we can proceed in
four cases, substituting each solution of the first equation into the solution equation for the
second. The first pair is ŷ1 = 0 and ŷ2 = 0, which clearly gives the equilibrium point (0, 0).
The second pair is ŷ1 = 0 and ŷ2 = K2, giving (0, K2). The third pair is ŷ1 = K1 − s1ŷ2

with ŷ2 = 0, giving (K1, 0) and the final pair is ŷ1 = K1 − s1ŷ2 with ŷ2 = K2 − s2ŷ1, which
can be solved to give (K1−s1K2

1−s1s2
, K2−s2K1

1−s2s2
). (Notice that for certain parameter values these

populations can be negative, which simply means that for certain parameter values there are
no equilibrium points for which both populations are present.)

The Jacobian matrix for this system is

~f ′(ŷ1, ŷ2) =

(

r1 − 2 r1

K1
ŷ1 − r1s1

K1
ŷ2 −r1s1

K1
ŷ1

−r2s2

K2
ŷ2 r2 − 2 r2

K2
ŷ2 − r2s2

K2
ŷ1

)

.

In order to determine whether or not each of our equilibrium points is (linearly) stable, we
need to compute the eigenvalues of the Jacobian matrix evaluated at that equilibrium point.
For the point (0, 0), we clearly have

~f ′(0, 0) =

(

r1 0
0 r2

)

,
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with eigenvalues r1 and r2. Since r1 and r2 are both assumed positive, we can conclude that
this equilibrium point is unstable. More precisely, it is a source.

For the equilibrium point (K1, 0), the Jacobian matrix is

~f ′(K1, 0) =

(

−r1 −r1s1

0 r2 − r2s2

K2
K1

)

,

with eigenvalues −r1 and r2(1−s2
K1

K2
). In this case, we can conclude instability if s2K1 < K2

and stability if s2K1 ≥ K2. This is easily interpreted as follows: suppose the populations are
(K1, 0) and that a small population of species 2 is introduced so that we have populations
(K1, ǫ). Then

y′
2 = r2ǫ(1 − s2

K1

K2

) − r2

K2

ǫ2,

where the ǫ2 term is small enough to be ignored (this is precisely what we ignore in the
linearization process). We see that y2 grows precisely when 1 − s2

K1

K2
> 0, which is our

instability condition.
For the equilibrium point (0, K2), the Jacobian matrix is

~f ′(0, K2) =

(

r1 − r1s1

K1
K2 0

−r2s2 −r2

)

,

with eigenvalues r1(1 − s1
K2

K1
) and −r2. Proceeding similarly as with the point (K1, 0), we

conclude that this equilibrium point is linearly stable for s1K2 ≥ K1 and linearly unstable
for s1K2 < K1.

For the equilibrium point (K1−s1K2

1−s1s2
, K2−s2K1

1−s2s2
), we first observe that the linear system of

equations that we solved to find this point can be written in the form

r1 −
r1

K1

ŷ1 −
r1s1

K1

ŷ2 =0

r2 −
s2r2

K2
ŷ1 −

r2

K2
ŷ2 =0,

and that these equations allow us to write the Jacobian matrix for this equilibrium point in
the simplified form

~f ′(ŷ1, ŷ2) =

( − r1

K1
ŷ1 −r1s1

K1
ŷ1

−r2s2

K2
ŷ2 − r2

K2
ŷ2

)

.

The eigenvalues of this matrix are roots of the characteristic equation

det

( − r1

K1
ŷ1 − λ −r1s1

K1
ŷ1

−r2s2

K2
ŷ2 − r2

K2
ŷ2 − λ

)

= (− r1

K1
ŷ1 − λ)(− r2

K2
ŷ2 − λ) − r1s1

K1
ŷ1

r2s2

K2
ŷ2 = 0,

or

λ2 + (
r1ŷ1

K1
+

r2ŷ2

K2
)λ − r1r2

K1K2
ŷ1ŷ2(1 − s1s2) = 0.

According to the quadratic formula, the solutions are

λ =
−( r1ŷ1

K1
+ r2ŷ2

K2
) ±

√

( r1ŷ1

K1
+ r2ŷ2

K2
)2 + 4 r1r2

K1K2
ŷ1ŷ2(1 − s1s2)

2
.
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The only way these eigenvalues can be positive is if the value generated by the radical is
larger than ( r1ŷ1

K1
+ r2ŷ2

K2
), and with all parameter values positive this only occurs if 1−s1s2 > 0.

Hence, we have linear stability for 1 − s1s2 ≤ 0 and linear instability for 1 − s1s2 > 0. △
Example 2.4. cont. For the nonlinear system of equations considered in Example 2.4,
eigenvalues of the Jacobian matrix are cumbersome to evaluate in general, and for the two
more complicated equilibrium points we will work with specific parameter values. For the
points (0, 0, 0) and (K, 0, 0), however, we can fairly easily obtain general expressions for the
eigenvalues.

In this case, we have already found a general form of the Jacobian matrix in (2.11),

~f ′(ŷ1, ŷ2, ŷ3) =





a − 2a
K

ŷ1 − bŷ2 −bŷ1 0
cŷ2 −r + cŷ1 − eŷ3 −eŷ2

0 gŷ3 −f + gŷ2



 .

For the point (0, 0, 0), this becomes

~f ′(0, 0, 0) =





a 0 0
0 −r 0
0 0 −f



 ,

and we immediately see that the eigenvalues are a, −r, and −f . Since a > 0, the point is
unstable. For the point (K, 0, 0) the Jacobian matrix is

~f ′(ŷ1, ŷ2, ŷ3) =





−a −bK 0
0 −r + cK 0
0 0 −f



 ,

and again we can read off the eigenvalues as −a, −r + cK, and −f . In this case, the
equilibrium point is stable so long as r ≥ cK, and asymptotically stable if r > cK. If
r < cK the point is unstable. We can interpret this as follows: in the absence of population
y3, we have y′

2 = y2(cy1 − r). Since y1 = K in equilibrium, the population y2 will grow if
cK − r > 0. (We can focus on the case y3 = 0 because equilibrium points are unstable if
they are unstable to any perturbation.)

The expressions become uninstructive if we consider the remaining two equilibrium points
in all generality, so let’s focus on a choice of parameter values a = 2, K = 1, b = 1, r = 1

2
,

c = 4, e = 2, f = 1, and g = 2. In this case, we have

(
K

a
(a − bf

g
),

f

g
,
−r + cK

a
(a − bf

g
)

e
) = (

3

4
,
1

2
,
5

4
) and (

r

c
,
a − ar

cK

b
, 0) = (

1

8
,
7

4
, 0).

For the second of these, the Jacobian matrix is

~f ′(
1

8
,
7

4
, 0) =





−1
4

−1
8

0
7 0 −7

2

0 0 5
2



 .

The eigenvalues are solutions of the characteristic equation

det





−1
4
− λ −1

8
0

7 −λ −7
2

0 0 5
2
− λ



 = (
5

2
− λ) det

(

−1
4
− λ −1

8

7 −λ

)

= 0,
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from which it is clear that λ = 5
2

is one of the eigenvalues so that the equilibrium point is
unstable. Finally, for the point (3

4
, 1

2
, 5

4
), for which all populations are non-zero, we have

~f ′(
3

4
,
1

2
,
5

4
) =





−3
2

−3
4

0
2 0 −1
0 5

2
0



 .

The eigenvalues are solutions of the characteristic equation

det





−3
2
− λ −3

4
0

2 −λ −1
0 5

2
−λ



 = (−3

2
− λ)[λ2 +

5

2
] − 2[

3

4
λ] = 0,

or

λ3 +
3

2
λ2 + 4λ +

15

4
= 0.

We can solve this equation in MATLAB as follows.

>>eval(solve(’xˆ3+1.5*xˆ2+4*x+15/4’))
ans =
-0.2195 + 1.8671i
-1.0610
-0.2195 - 1.8671i

We see that the real part of each equilibrium point is negative, and so we conclude that this
equilibrium point is linearly stable.

As a final remark, I’ll observe that if we are going to use MATLAB anyway, we way as
well use the eig command. That is:

>>J=[-3/2 -3/4 0;2 0 -1;0 5/2 0]
J =
-1.5000 -0.7500 0
2.0000 0 -1.0000
0 2.5000 0
>>eig(J)
ans =
-1.0610
-0.2195 + 1.8671i
-0.2195 - 1.8671i

△
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2.7 Linear Stability with MATLAB

In this section we repeat the linear stability analysis for the Lotka–Volterra competition
model in Example 2.8, this time using MATLAB. We use the M-file stability2.m:

Example 2.8 cont. Given the parameter values r1 = r2 = K1 = K2 = 1, s1 = 1
2
, and

s2 = 1
4
, find all equilibrium points for the Lotka–Volterra competition model and determine

whether or not each is stable.
We use the MATLAB M-file stability2.m.

%STABILITY2: MATLAB script M-file that locates
%equilibrium points for the Lotka-Volterra competition
%model, computes the Jacobian matrix for each
%equilibrium point, and finds the eigenvalues of
%each Jacobian matrix. Parameter values are chosen
%as r1=r2=K1=K2=1, s1=.5, s2=.25.
syms y1 y2;
y = [y1, y2];
f=[y1*(1-(y1+y2/2)), y2*(1-(y1/4+y2))];
[ye1 ye2] = solve(f(1),f(2))
J = jacobian(f,y)
for k=1:length(ye1)
y1 = eval(ye1(k))
y2 = eval(ye2(k))
A = subs(J)
lambda = eig(A)
end

We find:

>>stability2
ye1 =
0
1
0
4/7
ye2 =
0
0
1
6/7
J =
[ 1-2*y1-1/2*y2, -1/2*y1]
[ -1/4*y2, 1-1/4*y1-2*y2]
y1 =
0
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y2 =
0
A =
1 0
0 1
lambda =
1
1
y1 =
1
y2 =
0
A =
-1.0000 -0.5000
0 0.7500
lambda =
-1.0000
0.7500
y1 =
0
y2 =
1
A =
0.5000 0
-0.2500 -1.0000
lambda =
-1.0000
0.5000
y1 =
0.5714
y2 =
0.8571
A =
-0.5714 -0.2857
-0.2143 -0.8571
lambda =
-0.4286
-1.0000

In this case the equilibrium points are respectively (0, 0), (1, 0), (0, 1), and (4
7
, 6

7
), and we

can immediately conclude that the first three are unstable while the third is stable. △
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2.8 Application to Maximum Sustainable Yield

An issue closely related to stability is maximum sustainable yield. The maximum sustainable
yield for a population of, say, fish, is the maximum number that can be harvested without
killing off the population.

Example 2.9. Suppose that in the absence of fishermen the population of fish, p(t), in a
certain lake follows a logistic model, and that fishing yield is added as a percent of population.
Determine the maximum sustainable yield for this population of fish and describe what will
happen to the fish population if the maximum sustainable yield is harvested.

Keeping in mind that as long as we remain at non-zero stable equilibrium points the fish
population will not die out, we begin by determining the equilibrium points for our model.
Subtracting a percent harvest from the logistic model, we have

dp

dt
= rp(1 − p

K
) − hp,

where r and K are as described in Example 2.3 and h is the population harvest rate. In
order to find the equilibrium points for this equation, we simply solve

rpe(1 − pe

K
) − hpe = 0 ⇒ pe = 0, K(1 − h

r
).

Since population can be regarded as positive, we conclude that a necessary condition for any
sustainable yield is h < r, which simply asserts that we much catch fewer fish than are born.

In order to apply the eigenvalue approach to the stability of these equilibrium points, we
recall that the eigenvalue of a 1×1 matrix (a.k.a. a scalar constant) is just the constant itself.
For the equilibrium points pe = 0, we obtain our linearized equation simply by dropping all
high order terms, and we find

dp

dt
= (r − h)p,

for which the matix A is the scalar A = r − h. But we have already argued that r > h, so
A > 0, and we can conclude instability. For the second equilibrium point, we introduce the
perturbation variable x(t) through

p(t) = K(1 − h

r
) + x(t),

for which we find

dx

dt
= r(x + K(1 − h

r
))(1 − x + K(1 − h

r
)

K
) − h(x + K(1 − h

r
)).

Dropping high order terms, we have

dx

dt
= − (r − h)x,

for which A = −(r − h) < 0, and we conclude stability. (In the case of single equations,
stability is more readily observed directly, through consideration of the sign of dp

dt
for p above
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and below the equilibrium point (see the discussion of the logistic equation in Section 2.3),
but it’s instructive to see how the general approach works.) We conclude that so long as
h < r, pe = K(1 − h

r
) is an equilibrium point.

Finally, we choose our harvest rate h to maxiumize the yield, defined by

Y (h) = peh = hK(1 − h

r
).

Maximizing in the usual way through differentiation, we have

Y ′(h) = K(1 − h

r
) − hK

r
= 0 ⇒ h =

r

2
.

For this rate, our harvest is r
2
K(1 − r/2

r
) = rK

4
, and the fish population approaches its

equilibrium point K(1 − r/2
r

) = K
2
. △

2.9 Nonlinear Stability Theorems

In this section, we state two important theorems regarding the nonlinear terms that are
dropped off in linearization.

Theorem 2.16 (Poincare–Perron). For the ODE system

d~y

dt
= ~f(~y),

suppose ~ye denotes an equilibrium point and that ~f is twice continuously differentiable for ~y
in a neighborhood of ~ye. (I.e., all second order partial derivatives of each component of ~f
are continuous.) Then ~ye is stable or unstable as follows:

1. If the eigenvalues of ~f ′(~ye) all have negative real part, then ~ye is asymptotically stable.

2. If any of the eigenvalues of ~f ′(~ye) has positive real part then ~ye is unstable.

Example 2.10. Show that the assumptions of the Poincare–Perron Theorem are satisfied
for the competition model studied in Example 2.8, and consequently that for cases for which
none of the eigenvalues has 0 real part asymptotic stability or instability can be concluded
from linear stability or instability.

For the competition model studied in Example 2.6, we have

f1(y1, y2) = r1y1(1 − y1 + s1y2

K1

)

f2(y1, y2) = r2y2(1 − y2 + s2y1

K2
),

and consequently

∂2f1

∂y2
1

(y1, y2) = −2
r1

K1
;

∂2f1

∂y2
2

(y1, y2) = 0;
∂2f1

∂y1∂y2
(y1, y2) =

∂2f1

∂y2∂y1
(y1, y2) = −r1s1

K1
,
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and

∂2f2

∂y2
1

(y1, y2) = 0;
∂2f2

∂y2
2

(y1, y2) = −2
r2

K2

;
∂2f2

∂y1∂y2

(y1, y2) =
∂2f2

∂y2∂y1

(y1, y2) = −r2s2

K2

.

Since each of these eight second partials is continuous the assumptions of the Poincare–Perron
theorem are satisfied. △
Remark. This is not the most general statement of the Poincare–Perron theorem, but the
assumption of differentiability usually holds true, and it is easy to check in practice.

Before proving the Poincare–Perron Theorem, we state a more abstract theorem that
gives more information. The formulation I’ll give is a slight generalization of the original
1960 result of Hartman [Evans]. In stating this result, we will adopt the following convention:

we will use the notation ~y(t; ~y0) to denote the solution of the initial value problem ~y′ = ~f(~y),
~y(0) = ~y0. The flow of this differential equation is defined as the operator

St~y0 = ~y(t; ~y0).

Theorem 2.17 (Hartman–Grobman). For the ODE system

d~y

dt
= ~f(~y); ~y(0) = ~y0,

suppose ~ye is an equilibrium point for which ~f ′(~ye) has no eigenvalues with real part 0, and

that ~f is twice continuously differentiable in a neighborhood of ~ye. Then solutions ~y(t; ~y0)
are similar to solutions ~z(t; ~z0) of the linear problem

d~z

dt
= ~f ′(~ye)~z; ~z(0) = ~z0

in the following sense: there exists a differentiable vector function ~φ with a differentiable
inverse ~φ−1 (technically, ~φ is a diffeomorphism) so that ~φ maps neighborhoods of 0 into
neighborhoods of ~ye and

~y(t; ~φ(~z0)) = ~φ(~z(t; ~z0)).

In order to better understand exactly what this theorem is telling us, let’s consider a
system of two equations for which ~f ′(~ye) has one eigenvalue with positive real part and
one eigenvalue with negative real part (i.e., a saddle). We know from our study of linear
systems that the phase plane for the linear system contains two straight lines, one along
which trajectories move toward ~ye and one along which trajectories move away from ~ye. The
function ~φ provides a map from this configuration to a similar configuration in the phase
plane for the nonlinear system. Perhaps the easiest way to see this is to consider a vector
point ~u0 on the line with an out-going trajectory, and to study the effect of ~φ on the line
between 0 and ~u0. In particular, since ~φ is invertible, this line must be mapped into a curve
in the ~y phase plane connecting φ(0) = ~ye to ~φ(~u0). (See Figure 2.14.) In this way, we
see that the most important aspects of the phase plane, at least with regard to stability,
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1

2

z0

y1

y2

ye

φ 
z

φ (z )=y(0;0
φ (z ))0

z

0z(t;z )

(z(t;z ))0φ =y(t; φ (z ))0

Figure 2.14: The Hartman–Grobman mapping from a linear phase phase space to a nonlinear
phase space.

are preserved under ~φ. More precisely, all outgoing trajectories remain outgoing under ~φ
and all incoming trajectories remain incoming under ~φ. Thus either asymptotic stability or
instability is preserved.

Example 2.11. Explain how the Hartman–Grobman theorem can be interpreted in the
case of the equilibrium point (0, 0) for the competition model of Example 2.8.

We have shown in Example 2.8 that for this equilbrium point the Jacobian matrix has
two positive eigenvalues so that the linear system has an unstable node at ~ze = ~0. This
means that at the linear level all trajectories eventually flow away from the equilibrium
point. (Even in this case, due to possible cancellation, trajectories may transiently move
toward the equilibrium point.) The Hartman–Grobman theorem asserts that we can conclude
that all trajectories associated with the nonlinear ODE also eventually flow away from the
equilibrium point. Note particularly that this is more information than we obtained for the
same equilibrium point from Poincare–Perron. △

2.10 Solving ODE Systems with matrix exponentiation

In this section we introduce a new method for solving linear systems of ODE that will allow
us to prove the Poincare–Perron Theorem. We begin by writing the system

dy1

dt
= y2

dy2

dt
=

g

l
y1,

in matrix form
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~y′ = A~y, (2.17)

where

~y =

(

y1

y2

)

, and A =

(

0 1
g
l

0

)

.

If we define matrix exponentiation through Taylor expansion,

eAt = I + At +
1

2
A2t2 +

1

3!
A3t3 + ...,

then as in the case with single equations, we can conclude

y(t) = eAt

(

y1(0)
y2(0)

)

is a solution to (2.17). (This assertion can be checked through direct term-by-term differ-
entiation.) In the event that A is diagonal (which is not the case in our example), eAt is
straightforward to evaluate. For

A =

(

a1 0
0 a2

)

,

we have

eAt =I + At +
1

2
A2t2 +

1

3!
A3t3 + ...

=

(

1 0
0 1

)

+

(

a1 0
0 a2

)

t +
1

2

(

a1 0
0 a2

)(

a1 0
0 a2

)

t2

+
1

6

(

a1 0
0 a2

)(

a1 0
0 a2

)(

a1 0
0 a2

)

+ ...

=

(

1 0
0 1

)

+

(

a1 0
0 a2

)

t +
1

2

(

a2
1 0
0 a2

2

)

t2 +
1

6

(

a3
1 0
0 a3

2

)

+ ...

=

(

ea1t 0
0 ea2t

)

.

In the event that A is not diagonal, we will proceed by choosing a change of basis that
diagonalizes A. A general procedure for diagonalizing a matrix is outlined in the following
three steps.

1. For an n × n matrix A, find n linearly independent eigenvectors of A, ~v1, ~v2, ..., ~vn.

2. Form a matrix P that consists of ~v1 as its first column, ~v2 as its second column, etc.,
with finally ~vn as its last column.

3. The matrix P−1AP will then be diagonal with diagonal entries the eigenvalues associ-
ated with ~v1, ~v2, ..., ~vn: λ1, λ2, ..., λn.
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Remark on Steps 1–3. First, it is not always the case that a matrix will have n lin-
early independent eigenvectors, and in situations for which this is not the case, more work
is required (in particular, instead of diagonalizing the matrix, we put it in Jordon canon-
ical form). Under the assumption that Step 1 is possible, the validity of Steps 2 and 3 is
straightforward. If P is the matrix of eigenvectors, then

AP = (λ1~v1
...λ2~v2

... . . .
...λn~vn);

that is, the matrix containing as its kth column the vector λk~vk. Multiplying on the left by
P−1, which must exist if the ~vk are all linearly independent, we have

P−1(µ1~v1
...µ2~v2

... . . .
...µn~vn) =











µ1 0 0 0
0 µ2 0 0

0 0
. . . 0

0 0 0 µn











.

In this last calculation, we are almost computing P−1P , which would yield the identity
matrix.

Example 2.12. Diagonalize the matrix

A =

(

0 1
g
l

0

)

,

which arose upon linearization of the pendulum equation about the equilibrium point (π, 0).
We have already seen in Example 3.5 that the eigenvalues and eigenvectors for this

equation are

λ1 = −
√

g

l
, ~v1 =

(

1
−
√

g
l

)

; λ2 =

√

g

l
, ~v2 =

(

1
√

g
l

)

.

Accordingly, we define

P =

(

1 1
−
√

g
l

√

g
l

)

⇒ P−1 =

√

l

4g

( √

g
l

−1
√

g
l

1

)

,

with which we compute

D =P−1AP =

√

l

4g

( √

g
l

−1
√

g
l

1

)(

0 1
g
l

0

)(

1 1
−
√

g
l

√

g
l

)

=





1
2

−1
2

√

l
g

1
2

1
2

√

l
g





(

−
√

g
l

√

g
l

g
l

g
l

)

=

(

−
√

g
l

0
0 +

√

g
l

)

.

Note particularly that the order of eigenvalues down the diagonal agrees with the order in
which the eigenvectors appear in our construction of P . △
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Once the diagonalizing matrix P has been constructed, it can be used in computing eAt.
In the event that A = PDP−1, we have

eAt = I + At +
1

2
A2t2 +

1

3!
A3t3 + ...,

= I + (PDP−1)t +
1

2
(PDP−1)2 +

1

3!
(PDP−1)3 + ...

= I + (PDP−1)t +
1

2
(PDP−1PDP−1) +

1

3!
(PDP−1PDP−1PDP−1) + ...

=P (I + Dt +
1

2
D2 +

1

3!
D3 + ...)P−1

=PeDtP−1.

We are now in a position to very quickly write down the solution to a fairly general linear
system of ODE with constant coefficients.

Theorem 2.18. For the ODE system

~y′ = A~y; ~y(0) = ~y0,

suppose A is a constant n × n matrix with n linearly independent eigenvectors {~vk}n
k=1, and

a matrix P is constructed by using ~v1 as the first column, ~v2 as the second column etc. Then
the ODE system is solved by

~y(t) = eAt~y0 = PeDtP−1~y0,

where D is a diagonal matrix with the eigenvalues of A on the diagonal.

Example 2.13. Use the method of matrix exponentiation to solve the linear ODE ~y′ = A~y,
where

A =

(

0 1
g
l

0

)

.

In this case, we computed P and P−1 in Example 3.11, so we can immediately write

~y(t) = eAt

(

y1(0)
y2(0)

)

= PeDtP−1

(

y1(0)
y2(0)

)

=

(

1 1
−
√

g
l

√

g
l

)

(

e−
√

g

l
t 0

0 e
√

g

l
t

)

.(

√

l

4g
)

( √

g
l

−1
√

g
l

1

)(

y1(0)
y2(0)

)

=

(

e−
√

g

l
t e

√
g

l
t

−
√

g
l
e−

√
g

l
t
√

g
l
e
√

g

l
t

)





1
2
y1(0) − 1

2

√

l
g
y2(0)

1
2
y1(0) + 1

2

√

l
g
y2(0)





=





1
2
(y1(0) −

√

l
g
y2(0))e−

√
g

l
t + 1

2
(y1(0) +

√

l
g
y2(0))e

√
g

l
t

−1
2
(y1(0) −

√

l
g
y2(0))

√

g
l
e−

√
g

l
t + 1

2
(y1(0) +

√

l
g
y2(0))

√

g
l
e
√

g

l
t



 .
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This final expression should be compared with our previous answer to the same problem,
obtained in Example 3.5,

~y(t) =
1

2

(

y1(0) −
√

l

g
y2(0)

)

(

1
−
√

g
l

)

e−
√

g

l
t +

1

2

(

y1(0) +

√

l

g
y2(0)

)

(

1
√

g
l

)

e
√

g

l
t.

△

2.11 Taylor’s Formula for Functions of Multiple Variables

The proof of the Poincare–Perron Theorem requires a Taylor expansion of ~f(~y) about the
point ~ye; i.e., a Taylor expansion of a vector function about a vector variable. First, we state
Taylor’s theorem for a single function of a vector variable.

Theorem 2.19. Suppose a function f(y1, y2, . . . , yn) and all its partial derivatives up to
order N + 1 are continuous in a neighborhood of the point (ŷ1, ŷ2, . . . , ŷn). Then for each
point (y1, y2, . . . , yn) in this neighborhood, there exists a value θ ∈ (0, 1) so that ,

f(y1, y2, . . . , yn) =

n
∑

k=0

1

k!

(

(y1 − ŷ1)
∂

∂y1
+ (y2 − ŷ2)

∂

∂y2
+ · · · + (yn − ŷn)

∂

∂y2

)k

f

+
1

(n + 1)!

(

(y1 − ŷ1)
∂

∂y1
+ (y2 − ŷ2)

∂

∂y2
+ · · · + (yn − ŷn)

∂

∂y2

)n+1

f,

where the summed expression is evaluated at the point (ŷ1, ŷ2, . . . , ŷn), while the final error
expression is evaluated at

(ȳ1, ȳ2, . . . , ȳn) = (ŷ1, ŷ2, . . . , ŷn) + θ(y1 − ŷ1, y2 − ŷ2, . . . , yn − ŷn).

We observe that the expression for f in this theorem can be written more succinctly in
the vector form

f(~y) =

n
∑

k=0

1

k!

(

(~y − ~ye) · ∇
)k

f(~ye) +
1

(n + 1)!

(

(~y − ~ye) · ∇
)n+1

f(ȳ),

where ~ye = (ŷ1, ŷ2, . . . , ŷn) and
ȳ = ~ye + θ(~y − ~ye).

In writing a Taylor expansion for a vector function ~f(~y), we can proceed by using the
above theorem to expand each component of f . By doing this, we can prove the following
theorem.

Theorem 2.20. Suppose ~f(~y) is twice continuously differentiable in a neighborhood of the
point ~ye, and let B̄r(~ye) denote a closed ball of radius r contained in this neighborhood. Then

there exists a function ~Q = ~Q(~ye, ~y) so that for all ~y ∈ B̄r(~ye)

~f(~y) = ~f(~ye) + ~f ′(~ye)(~y − ~ye) + ~Q(~ye, ~y),

with
| ~Q(~ye, ~y)| ≤ C|~y − ~ye|2,

where C depends only on ~f , and ~ye.
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2.12 Proof of Part 1 of Poincare–Perron

In this section, we prove Part 1 of the Poincare–Perron Theorem, stated in Subsection 2.9.

We begin with the equation ~y′ = ~f(~y), for which ~ye is assumed to be an equilibrium point.

Under our assumption that ~f(~ye) is twice continuously differeniable in a neighborhood of ~ye,
we can write the Taylor expansion

~f(~y) = ~f(~ye) + ~f ′(~ye)(~y − ~ye) + ~Q(~y, ~ye),

where we know that ~f(~ye) = 0 and | ~Q(~ye, ~y)| ≤ C|~y−~ye|2. Upon linearization with ~z = ~y−~ye,
we obtain

~z′ = ~f ′(~ye)~z + ~Q(~y, ~ye),

where | ~Q(~ye, ~y)| ≤ C|~z|2. We can re-write this equation for ~z as

(e−
~f ′(~ye)t~z)′ = e−

~f ′(~ye)t ~Q(~y, ~ye),

which can be integrated from 0 to t to give

~z(t) = e
~f ′(~ye)t~z(0) +

∫ t

0

e
~f ′(~ye)(t−s) ~Q(~y(s), ~ye)ds.

In the first case of the theorem, the eigenvalues of ~f ′(~ye) all have negative real part. If we let

λR denote the real part of the largest eigenvalue of ~f ′(~ye), then there exists some constant C1

so that the largest entry in the matrix e
~f ′(~ye)(t−s) is bounded in complex modulus by C1e

λRt.
In this way, we see that

|~z(t)| ≤ K1e
λRt|~z(0)| + K2

∫ t

0

eλR(t−s)|~z(s)|2ds, (2.18)

where K1 and K2 are positive constants. Let ζ(t) be defined as follows:

ζ(t) := sup
s∈[0,t]

|~z(s)e−λRs|,

and note that (2.18) can be rearranged as

|~z(t)e−λRt| ≤K1|~z(0)| + K2

∫ t

0

e−λRs|~z(s)|2ds.

Clearly, since the right-hand side of (2.18) increases with t, we can take a sup norm on each
side of this last expression to obtain

ζ(t) ≤K1|~z(0)| + K2

∫ t

0

e−λRs|~z(s)|2ds.

≤K1ζ(0) + K2ζ(t)2

∫ t

0

eλRsds

≤K1ζ(0) +
K2

|λR|
ζ(t)2. (2.19)
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Note especially that since ζ(0) = |~z(0)|, we are justified in choosing it as small as we like.
(In our definition of stability, we take |~z(0)| ≤ δ, where δ may be chosen.) The following
argument is referred to as continuous induction. Since it is important in its own right, we
separate it out as a lemma.

Lemma 2.21 (continuous induction). Suppose there exists a constant C so that

ζ(t) ≤ C(ζ(0) + ζ(t)2), (2.20)

for all t ≥ 0. If ζ(0) < min{1, 1/(4C2)}, then

ζ(t) < 2Cζ(0), (2.21)

for all t ≥ 0.

Proof of the claim. We first observe that by (2.20), and for ζ(0) < 1,

ζ(0) ≤ C(ζ(0) + ζ(0)2) < C(ζ(0) + ζ(0)) = 2Cζ(0),

so (2.21) is satisfied for t = 0 and, by continuity for some interval t ∈ [0, T ]. Let T , if it
exists, denote the first time for which ζ(T ) = 2Cζ(0). Then

ζ(T ) ≤ C(ζ(0) + ζ(T )2) = C(ζ(0) + 4C2ζ(0)2) < C(ζ(0) + ζ(0)) = 2Cζ(0),

which contradicts the existence of T . If no such T exists, (2.21) must be true for all t. �

We now conclude our proof of Poincare–Perron as follows. Let C = max{K1,
K2

|λR|
}. Then

by (2.19), we have
ζ(t) ≤ C(ζ(0) + ζ(t)2),

where since ζ(0) can be chosen as small as we like, we can take ζ(0) < min{1, 1/(4C2)}, so
that the assumptions of our lemma on continuous induction are met. We conclude

ζ(t) < 2Cζ(0),

or
sup

s∈[0,t]

|~z(s)e−λRs| < 2Cζ(0).

In particular,
|~z(t)e−λRt| < 2Cζ(0),

giving at last
|~z(t)| ≤ 2Cζ(0)eλRt.

Since λR < 0,
lim
t→∞

|~z(t)| = lim
t→∞

2Cζ(0)eλRt = 0,

which means, according to our definition of asymptotic stability that ~ye is asymptotically
stable. �

46



3 Uniqueness Theory

Example 3.1. Consider the following problem: Ignoring air resistance, determine an exact
form for the time at which an object lauched vertically from a height h with velocity v strikes
the earth. According to Newton’s second law of motion, the height of the object y(t) can be
described through,

y(t) = −g
t2

2
+ vt + h.

Setting y(t) = 0, we find,
−gt2/(2h) + vt/h + 1 = 0,

with solution,

t =
−v ±

√

v2 + 2gh

−g
.

While we know that there is only one time at which the object can strike the ground, our
model gives us two different times. This is a problem of uniqueness. (In this case, the
resolution is straightforward: taking − makes t > 0 and corresponds with the time we are
looking for; taking + makes t < 0 and corresponds with the object’s trajectory being traced
backward in time along its parabolic arc to the ground.) △

Though the question of uniqueness arises in every type of equation—algebraic, differ-
ential, integral, integrodifferential, stochastic, etc.—we will only develop a (relatively) full
theory in the case of ordinary differential equations.

Example 3.2. Consider the ordinary differential equation,

dy

dt
= y2/3; y(0) = 0.

Solving by separation of variables, we find y(t) = t3/27, which we compare with the following
MATLAB script:

>>[t,y]=ode23(inline(’yˆ(2/3)’,’t’,’y’),[0 ,.5],0)
t =
0
0.0500
0.1000
0.1500
0.2000
0.2500
0.3000
0.3500
0.4000
0.4500
0.5000
y =
0
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0
0
0
0
0
0
0
0
0
0

According to MATLAB, the solution is y(t) = 0 for all t, and indeed it is straightforward to
check that this is a valid solution to the equation. We find, in fact, that for any c > 0, the
function y(t) given as

y(t) =

{

(t−c)3

27
, t ≥ c

0, t ≤ c

satisfies this equation. In practice, this is the fundamental issue with uniqueness: If our
model does not have a unique solution, we don’t know whether or not the solution MATLAB
(or alternative software) gives us is the one that corresponds with the phenomenon we’re
modeling. △

Two critical questions are apparent: 1. When can we insure that this problem won’t
arise (that solutions are unique)? and 2. In the case of nonuniqueness, can we develop a
theory that selects the correct solution? The second of these questions can only be answered
in the context of the phenomenon we’re modeling. For example, in Example 3.5, we selected
t > 0 because we were trying to predict a future time, and only one solution satisfied t > 0.
As we observed, however, the other solution answered a different question that might have
been posed: how long ago would the object have had to leave the ground to get to height
h? Fortunately, for the first of our two questions—at least in the case of ODE—we have a
definitive general theorem.

Theorem 3.1. (ODE Uniqueness) Let f(t, y) = (f1(t, y), f2(t, y), ..., fn(t, y))tr be a vector
function whose components are each continuous in both t and y in some neighborhood a ≤
t ≤ b and a1 ≤ y1 ≤ b1,a2 ≤ y2 ≤ b2,...,an ≤ yn ≤ bn and whose partial derivatives ∂yl

fk(t, y)
are continuous in both t and y in the same neighborhoods for each l, k = 1, ..., n. Then given
any initial point (t0, y0) ∈ R × R

n such that a < t0 < b and ak < y0k
< bk for all k = 1, ...n,

any solution to
dy

dt
= f(t, y); y(t0) = y0

is unique on the neighborhood of continuity.

Example 3.2 continued. Notice that our equation from Example 3.2 better not satisfy
the conditions of Theorem 3.1. In this case, f(t, y) = y2/3, which is continuous in both t
(trivially) and y. Computing ∂yf(t, y) = 2

3
y−1/3, we see that the y-derivative of f is not

continuous at the initial value y = 0. △
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Example 3.3. Consider again the Lotka–Volterra predator–prey model, which we can re-
write in the notation of Theorem 3.1 as (y1 = x, y2 = y),

dy1

dt
= ay1 − by1y2; y1(t0) = y01

dy2

dt
= − ry2 + cy1y2; y2(t0) = y02

.

In this case, the vector f(t, y) is
(

f1(t, y1, y2)
f2(t, y1, y2)

)

=

(

ay1 − by1y2

−ry2 + cy1y2

)

.

As polynomials, f1, f2, ∂y1
f1, ∂y2

f1, ∂y1
f2, and ∂y2

f2 must all be continuous for all t, y1, and
y2, so any solution we find to these equations must be unique. △
Idea of the uniqueness proof. Before proceeding with a general proof of Theorem 3.1,
we will work through the idea of the proof in the case of a concrete example. Consider the
ODE

dy

dt
= y2; y(0) = 1, (3.1)

and suppose we want to establish uniqueness on the intervals a ≤ t ≤ b and a1 ≤ y ≤ b1, with
0 ∈ (a, b) and 1 ∈ (a1, b1). We begin by supposing that y1(t) and y2(t) are both solutions to
(3.1) and defining the squared difference between them as a variable,

E(t) := (y1(t) − y2(t))
2.

Our goal becomes to show that E(t) ≡ 0; that is, that y1(t) and y2(t) must necessarily be
the same function. Computing directly, we have

dE

dt
=2(y1(t) − y2(t))(

dy1

dt
− dy2

dt
)

= 2(y1(t) − y2(t))(y1(t)
2 − y2(t)

2)

= 2(y1(t) − y2(t))(y1(t) − y2(t))(y1(t) + y2(t))

= 2(y1(t) − y2(t))
2(y1(t) + y2(t))

= 2E(t)(y1(t) + y2(t)).

Since y1 and y2 are both assumed less than b1, we conclude the differential inequality

dE

dt
≤ 2E(t)(2b1),

which upon multiplication by the (non-negative) integrating factor e−4b1t can be written as

d

dt
[e−4b1tE(t)] ≤ 0.

Integrating, we have
∫ t

0

d

dt
[e−4b1sE(s)]ds = e−4b1sE(s)

∣

∣

∣

t

0
= e−4b1tE(t) − E(0) ≤ 0.
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Recalling that y1(0) = y2(0) = 1, we observe that E(0) = 0 and consequently E(t) ≤ 0. But
E(t) ≥ 0 by definition, so that we can conclude that E(t) = 0. �

Proof of Theorem 3.1. In order to restrict the tools of this proof to a theorem that should
be familiar to most students, we will carry it out only in the case of a single equation. The
extension to systems is almost identical, only requiring a more general form of the Mean
Value Theorem.

We begin as before by letting y1(t) and y2(t) represent two solutions of the ODE

dy

dt
= f(t, y); y(t0) = y0.

Again, we define the squared difference between y1(t) and y2(t) as E(t) := (y1(t) − y2(t))
2.

Computing directly, we have now

dE

dt
=2(y1(t) − y2(t))(

dy1

dt
− dy2

dt
)

= 2(y1(t) − y2(t))(f(t, y1) − f(t, y2)).

At this point, we need to employ the Mean Value Theorem (see Appendix A), which asserts
in this context that for each t there exists some number c ∈ [y1, y2] so that

f ′(c) =
f(t, y1) − f(t, y2)

y1 − y2
, or f(t, y1) − f(t, y2) = ∂yf(t, c)(y1 − y2).

Since ∂yf is assumed continuous on the closed interval t ∈ [a, b], y ∈ [a1, b1], the Extreme
Value Theorem (see Appendix A) guarantees the existence of some constant L so that
|∂yf(t, y)| ≤ L for all t ∈ [a, b], y ∈ [a1, b1]. We have, then, the so-called Lipschitz inequality,

|f(t, y1) − f(t, y2)| ≤ L|y1 − y2|. (3.2)

We conclude that
dE

dt
≤ 2|y1(t) − y2(t)|L|y1(t) − y2(t)| = 2LE(t),

from which we conclude exactly as above that E(t) ≡ 0. �

Remark on the Lipschitz Inequality. Often the ODE uniqueness theorem is stated under
the assumption of the Lipschitz inequality (3.2). I have chosen to state it here in terms of
the continuity of derivatives of f because that is typically an easier condition to check. Since
continuity of derivatives implies the Lipschitz inequality, the Lipschitz formulation is more
general.

4 Existence Theory

Existence theory is one of the most abstract topics in applied mathematics. The idea is to
determine that a solution to some problem exists, even if the solution cannot be found.

Example 4.1. Prove that there exists a real solution to the algebraic equation

x7 + 6x4 + 3x + 9 = 0.
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While actually finding a real solution to this equation is quite difficult, it’s fairly easy to rec-
ognize that such a solution must exist. As x goes to +∞, the left hand side becomes positive,
while as x goes to −∞ the left hand side becomes negative. Somewhere in between these
two extremes, the left hand side must equal 0. In this way we have deduced that a solution
exists without saying much of anything about the nature of the solution. (Mathematicians
in general are notorious for doing just this sort of thing.) △

If we really wanted to ruin MATLAB’s day, we could assign it the ODE

dy

dt
= t−1; y(0) = 1.

Solving by direct integration, we see that y(t) = log t + C, so that no value of C can match
our initial data. (The current version of MATLAB simply crashes.) As with the case of
uniqueness, we would like to insure the existence of some solution before trying to solve the
equation. Fortunately, we have the following theorem, due to Picard.

Theorem 4.1. (ODE Existence)2 Let f(t, y) = (f1(t, y), f2(t, y), ..., fn(t, y))tr be a vector
function whose components are each continuous in both t and y in some neighborhood a ≤
t ≤ b and a1 ≤ y1 ≤ b1,a2 ≤ y2 ≤ b2,...,an ≤ yn ≤ bn and whose partial derivatives ∂yl

fk(t, y)
are continuous in both t and y in the same neighborhoods for each l, k = 1, ..., n. Then given
any initial point (t0, y0) ∈ R × R

n such that a < t0 < b and ak < y0k
< bk for all k = 1, ...n,

there exists a solution to the ODE

dy

dt
= f(t, y); y(t0) = y0 (4.1)

for some domain |t − t0| < τ , where τ > 0 may be extremely small. Moreover, the solution
y is a continuous function of the independent variable t and of the parameters t0 and y0.

Example 4.2. Consider the ODE

dy

dt
= y2; y(0) = 1.

Since f(t, y) = y2 is clearly continuous with continuous derivatives, Theorem 3.3 guarantees
that a solution to this ODE exists. Notice particularly, however, that the interval of existence
is not specified. To see exactly what this means, we solve the equation by separation of
variables, to find

y(t) =
1

1 − t
,

from which we observe that though f(y) and its derivatives are continuous for all t and
y, existence is lost at t = 1. Referring to the statement of our theorem, we see that this
statement is equivalent to saying that τ = 1. Unfortunately, our general theorem does not
specify τ for us a priori. △
Idea of the proof of Theorem 4.1, single equations. Consider the ODE

dy

dt
= y; y(0) = 1.

2The assumptions here are exactly the same as those for Theorem 3.2, so together Theorems 3.2 and 3.3
constitute a complete existence–uniqueness theory.
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Our goal here is to establish that a solution exists without every actually finding the solution.
(Though if we accidentally stumble across a solution on our way, that’s fine too.) We begin
by simply integrating both sides, to obtain the integral equation

y(t) = 1 +

∫ t

0

y(s)ds.

(Unlike in the method of separation of variables, we have integrated both sides with respect
to the same variable, t.) Next, we try to find a solution by an iteration. (Technically, Picard
Iteration.) The idea here is that we guess at a solution, say yguess(t) and then use our integral
equation to (hopefully) improve our guess through the calculation

ynew guess(t) = 1 +

∫ t

0

yold guess(s)ds.

Typically, we call our first guess y0(t) and use the initial value: here, y0(t) = 1. Our second
guess, y1(t), becomes

y1(t) = 1 +

∫ t

0

y0(s)ds = 1 +

∫ t

0

1ds = 1 + t.

Similiarly, we compute our next guess (iteration),

y2(t) = 1 +

∫ t

0

y1(s)ds = 1 +

∫ t

0

(1 + s)ds = 1 + t +
t2

2
.

Proceeding similarly, we find that

yn(t) =

n
∑

k=0

tk

k!
⇒ lim

n→∞
yn(t) =

∞
∑

k=0

tk

k!
,

and our candidate for a solution becomes y(t) =
∑∞

k=0
tk

k!
, an infinite series amenable to such

tests as the integral test, the comparison test, the limit comparison test, the alternating series
test, and the ratio test. The last step is to use one of these tests to show that our candidate
converges. We will use the ratio test, reviewed in Appendix A. Computing directly, we find

lim
k→∞

ak+1

ak
= lim

k→∞

tk+1

(k+1)!

tk

k!

= lim
k→∞

tkt

(k + 1)k!
· k!

tk
= lim

k→∞

t

k + 1
= 0, for all t.

We conclude that y(t) is indeed a solution. Observe that though we have developed a series
representation for our solution, we have not found a closed form solution. (What is the
closed form solution?) △
Idea of the proof of Theorem 4.1, higher order equations and systems. We consider
the ODE

y′′(t) + y(t) = 0;

y(0) = 0; y(1) = 1. (4.2)
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In order to proceed as above and write (4.2) as an integral equation, we first write it in the
notation of Theorem 4.2 by making the substitutions y1(t) = y(t) and y2(t) = y′(t):

dy1

dt
= y2; y1(0) = 0

dy2

dt
= −y1; y2(0) = 1.

(Notice that the assumptions of Theorem 3.3 clearly hold for this equation.) Integrating, we
obtain the integral equations,

y1(t) =

∫ t

0

y2(s)ds

y2(t) = 1 −
∫ t

0

y1(s)ds.

Our first three iterations become,

y1(t)
(1) =

∫ t

0

1ds = t

y2(t)
(1) =1 −

∫ t

0

0ds = 1

y1(t)
(2) =

∫ t

0

1ds = t

y2(t)
(2) =1 −

∫ t

0

sds = 1 − t2

2

y1(t)
(3) =

∫ t

0

(1 − s2

2
)ds = t − t3

3!

y2(t)
(3) =1 −

∫ t

0

sds = 1 − t2

2
.

(By the way, I never said this was the world’s most efficient algorithm.) Continuing, we find
that

y(t) = y1(t) = t − t3

3!
+

t5

5!
− ... =

∞
∑

k=1

(−1)k+1 t2k−1

(2k − 1)!
.

Again, we can apply the ratio test to determined that this series converges (to what?). �

Proof of Theorem 4.1. As with Theorem 3.1, we will only prove Theorem 4.1 in the case
of single equations. The proof in the case of systems actually looks almost identical, where
each statement is replaced by a vector generalization. I should mention at the outset that
this is by far the most technically difficult proof of the semester. Not only is the argument
itself fairly subtle, it involves a number of theorems from advanced calculus (e.g. M409).

Integrating equation (4.1), we obtain the integral equation

y(t) = y0 +

∫ t

t0

f(s, y(s))ds.
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Iterating exactly as in the examples above, we begin with y0 and compute y1, y2,... according
to

yn+1(t) = y0 +

∫ t

t0

f(s, yn(s))ds; n = 0, 1, 2, ....

As both a useful calculation and a warmup for the argument to come, we will begin by
estimating ‖y1 − y0‖, where where ‖ · ‖ is defined similarly as in Theorem A.6 by

‖y(t)‖ := sup
|t−t0|<τ

|y(t)|.

We compute

|y1(t) − y0| = |
∫ t

t0

f(s, y0)ds|.

Our theorem assumes that f is continuous on s ∈ [t0, t] and hence bounded, so there exists
some constant M so that ‖f(s, y0)‖ ≤ M . We have, then

|y1(t) − y0| ≤ τM.

Observing that the right-hand side is independent of t we can take supremum over t on both
sides to obtain

‖y1 − y0‖ ≤ τM.

Finally, since we are at liberty to take τ as small as we like we will choose it so that
0 < τ ≤ ǫ/M , for some ǫ > 0 to be chosen. In this way, we can insure that our new value y1

remains in our domain of continuity of f .
We now want to look at the difference between two successive iterations and make sure the

difference is getting smaller—that our iteration is actually making progress. For |t− t0| < τ ,
we have

|yn+1(t) − yn(t)| =|
∫ t

t0

(

f(s, yn(s)) − f(s, yn−1(s))
)

ds|

≤
∫ t

t0

L|yn(s) − yn−1(s)|ds ≤ Lτ sup
|t−t0|≤τ

|yn(t) − yn−1(t)|.

Taking supremum over both sides (and observing that t has become a dummy variable on
the right-hand side), we conclude

‖yn+1 − yn‖ ≤ Lτ‖yn − yn−1‖,
Since τ is to be taken arbitrarily small, we can choose it to be as small as we like, and take
0 < τ ≤ L/2. In this way, we have

‖yn+1 − yn‖ ≤ 1

2
‖yn − yn−1‖.

We see that, indeed, on such a small interval of time our iterations are getting better. In
fact, by carrying this argument back to our initial data, we find

‖yn+1 − yn‖ ≤1

2
‖yn − yn−1‖ ≤ 1

2
· 1

2
‖yn−1 − yn−2‖

≤ 1

2n
‖y1 − y0‖ ≤ ǫ

2n
.
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In this way, we see that for n > m

‖yn − ym‖ =‖
n−1
∑

k=m

(yk+1 − yk)‖ ≤
n−1
∑

k=m

‖yk+1 − yk‖

≤ǫ

∞
∑

k=m

1

2k
=

ǫ

2m−1
.

We conclude that
lim

n>m→∞
‖yn − ym‖ = lim

n>m→∞

ǫ

2m−1
= 0,

and thus by Cauchy’s Convergence Condition (Theorem A.6) yn(t) converges to some func-
tion y(t), which is our solution. �

Fundamental Theorems

One of the most useful theorems from calculus is the Implict Function Theorem, which
addresses the question of existence of solutions to algebraic equations. Instead of stating its
most general version here, we will state exactly the case we use.

Theorem A.1. (Implicit Function Theorem) Suppose the function f(x1, x2, ..., xn) is C1

in a neighborhood of the point (p1, p2, ..., pn) (the function is continuous at this point, and
its derivatives with respect to each variable are also continuous at this point). Suppose
additionally that

f(p1, p2, ..., pn) = 0

and
∂x1

f(p1, p2, ..., pn) 6= 0.

Then there exists a neighborhood Np of (p2, p3, ..., pn) and a function φ : Np → R so that

p1 = φ(p2, p3, ..., pn),

and for every x ∈ Np,
f(φ(x2, x3, ..., xn), x2, x3, ..., xn) = 0.

Theorem A.2. (Mean Value Theorem) Suppose f(x) is a differentiable function on the
interval x ∈ [a, b]. There there exists some number c ∈ [a, b] so that

f ′(c) =
f(b) − f(a)

b − a
.

Theorem A.3. (Extreme Value Theorem) Suppose f(x) is a function continuous on a
closed interval x ∈ [a, b]. Then f(x) attains a bounded absolute maximum value f(c) and a
bounded absolute minimum value f(d) at some numbers c and d in [a, b].

Theorem A.4. (The Ratio Test) For the series
∑∞

k=1 ak, if limk→∞

∣

∣

∣

ak+1

ak

∣

∣

∣
= L < 1, then

the series is absolutely convergent (which means that not only does the series itself converge,
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but a series created by taking absolute values of the summands in the series also converges).

On the other hand, if limk→∞

∣

∣

∣

ak+1

ak

∣

∣

∣
= L > 1 or limk→∞

∣

∣

∣

ak+1

ak

∣

∣

∣
= ∞ the series diverges. if

limk→∞

∣

∣

∣

ak+1

ak

∣

∣

∣
= 1, the ratio test is inconclusive.

Theorem A.5. (Cauchy’s Convergence Condition) Let {an}∞n=1 be a sequence of points
and consider the limit limn→∞ an. A necessary and sufficient condition that this limit be
convergent is that

lim
n>m→∞

|an − am| = 0.

Theorem A.6. (Cauchy’s Convergence Condition for functions, in exactly the form we
require) Let the series of functions {yn(t)}∞n=1 be defined for t ∈ [a, b], and define ‖ · ‖ by the
relation

‖y(t)‖ := sup
t∈[a,b]

|y(t)|.

Then if
lim

n>m→∞
‖yn(t) − ym(t)‖ = 0,

we have
lim

n→∞
yn(t)

converges uniformly on t ∈ [a, b].

Theorem A.7. (Taylor expansion with remainder) Suppose f(x) and its first n derivatives
are continuous for x ∈ [a, b], and suppose the (n+1)st derivative f (n+1)(x) exists for x ∈ (a, b).
Then there is a value X ∈ (a, b) so that

f(b) = f(a) + f ′(a)(b − a) + ... +
f (n)(a)

n!
(b − a)n +

f (n+1)(X)

(n + 1)!
(b − a)n+1.

References

[BD] W. E. Boyce and R. C. Diprima, Elementary differential equations and boundary
value problems, 9th edition, Wiley 2009.

[Evans] L. Evans, Partial Differential Equations, Graduate Studies in Mathematics 19
(1998) American Mathematical Society.

[Hartman] P. Hartman, A lemma in the theory of structural stability of differential equations,
Proceedings of the AMS 11 (1960) 610–620.

[H.1] www.math.tamu.edu˜/phoward/M442.html

[H.2] P. Howard, Modeling with ODE, Available at
www.math.tamu.edu˜/phoward/M442.html

56



Index

critical points, 6

equilibrium points, 6
Extreme Value Theorem, 55

Hartman-Grobman Theorem, 39

Implicit Function Theorem, 55
instability

saddle, 13
integral curve, 5
integral equation, 52

linear stability, 30
Lipschitz inequality, 50

maximum sustainable yield, 37
Mean Value Theorem, 55

phase plane equation, 5
phase portrait, 2
Picard Iteration, 52
Poincare-Perron Theorem, 38

separatrix, 7
stability

orbital, 12

Taylor’s formula
functions of a single variable, 56
functions of multiple variables, 44

trajectories, 12

uniqueness theory, 47

57


