
M647, Spring 2023, Practice Problems for the Midterm

The midterm exam for M647 will be Thursday March 9, 7:00-9:00 p.m. in Blocker 628.
The exam will cover the following topics: linear and nonlinear regression, including theory
and implementation; dimensional analysis, including theory and implementation (both with
regression and structured experiments); and non-dimensionalization.

The exam will consist of two parts: Part 1 will not require MATLAB, while Part 2 will
require MATLAB. Students will not be allowed to use notes or references for Part 1, and
students must submit Part 1 before beginning Part 2. For Part 2, students can access any
notes, references, M-files etc., except no communication between students is allowed. Part 2
should be submitted via Canvas.

For some questions, students may be expected to access data files from the course web site.

The problems in homework assignments 2 through 6 serve as good practice for the exam,
and solutions can be found in Canvas under the files link. The problems below are intended
to provide students with some additional practice. These problems are not assigned to be
turned in, and solutions are included.

Practice Problems

1. Suppose data {(xk, yk)}Nk=1 is fit by linear least squares regression to a line through the
origin y = mx. Determine whether or not the relation µy = mµx must hold in all such cases.
Here µx and µy are respectively means of the values {xk}Nk=1 and {yk}Nk=1.

2. Suppose F is a design matrix with linearly independent columns, and set V = (F TF )−1.

a. Show that V = (V F T )(V F T )T .

b. Show that the diagonal entries of V are all positive.

3. When an object such as a marble falls through a viscous fluid such as oil its terminal
velocity depends on the marble’s radius r, the gravitational acceleration g = 9.81 m/s−2,
the fluid viscosity µ, and the density difference ∆ρ = ρm − ρf , where ρm denotes marble
density and ρf denotes fluid density.

a. Find a general relationship for the dependence of v on the variables r, g, µ, and ∆ρ.

b. Use the data {(rk, gk, µk, dρk, vk)}10k=1 in the MATLAB M-file marbledata.m (available on
the course web site) to complete your model from Part (a).

c. Use your model to predict v for the case r = .0065, µ = 15kg ·m−1s−1, ∆ρ = 672.8kg ·m−3.
This experiment was carried out during the undergraduate modeling class Fall 2009 (Dial
soap, marble, tennis ball can), and we timed v = .0097m/s.

4. Suppose the power P generated by a windmill depends on the following five variables
(and no others): density of air ρ, viscosity of air µ, radius of the windmill r, wind speed v,
and fraction of kinetic energy transferred into electrical energy available to the grid η. (Here,
[P ] = ML2T−3, [ρ] = ML−3, [µ] = ML−1T−1, [r] = L, [v] = LT−1, and [η] = 1).
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a. Find a general form for the dependence of P on the other variables.

b. Suppose you would like to compute the power P for a windmill with ρ = 1.25 kg/m3,
µ = 2.00× 10−5 kg/(m·s), r = 100 m, v = 10 m/s, and η = .5, but you would like to carry
out your experiment with a model windmill with radius r = 2m. Assuming you can design
your experiment with any values you like for the other variables (i.e., ρ, µ, v, and η), design
an experiment that will allow you to compute P .

5. Solve the following:

a. Before proving Buckingham’s Theorem, we worked through the steps of the proof with
our example in which an object is fired directly up from a height h. During that calculation,
we noted that the exponent vectors corresponding with π1 = gh

v2
and π2 = gt

v
are

~v1 =


−2
1
1
0

 ; ~v2 =


−1
1
0
1

 .

Starting with ~v1 and ~v2, we completed a basis for R4 by adding the vectors

~v3 =


0
0
1
0

 ; ~v4 =


0
0
0
1

 ,

which correspond with dimensioned products π3 = h and π4 = t. We stated that it must
be possible to write each of our four variables v, g, h, t in terms of {πj}4j=1. Write out what
these combinations would be.

b. Write out the equation

−1

2

gt2

h
+
vt

h
+ 1 = 0

by using Part (a) to replace each of the variables v, g, h, t with its appropriate combination
of {πj}4j=1. What happens to π3 and π4? How did you know this had to happen?

c. Alternatively (to the approach taken in class), we could have completed a basis for R4 by
adding the vectors

~v3 =


1
1
1
1

 ; ~v4 =


1
−1
1
1

 .

Explain how our general proof would have accomodated this choice. Explicitly compute the
updated choices of π3 and π4 we would get in the proof.

6. Consider an object of mass m moving along a frictionless surface and attached to a wall
by a spring. If we let y(t) denote the spring’s displacement from equilibrium, and we assume
y(t) is small, then the motion can often be modeled by an equation of the form

my′′ = −k1y + k3y
3,
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where k1 is Hooke’s constant and the term k3y
3 is a nonlinear correction corresponding with

the fact that the spring will weaken if either strongly stretched or strongly compressed. Find
the dimensions of k1 and k3 and nondimensionalize this equation.

7. Non-dimensionalize the system

d2x

dt2
= − b

√
x′2 + y′2x′

d2y

dt2
= − g − b

√
x′2 + y′2y′,

where x and y denote coordinates of a position vector, g denotes the usual gravitational
constant, and b denotes a drag coefficient. Write down initial conditions for your non-
dimensional system, based on the original initial conditions,

x(0) = 0

y(0) =h0

x′(0) = |~v0| cos θ

y′(0) = |~v0| sin θ.

Solutions

1. First, for the regression calculation the design matrix will be

F =


x1
x2
...
xN

 .

The regression slope m will be a solution of the normal equation F TFm = F T~y, which in
this case becomes

(
N∑
k=1

x2k)m =
N∑
k=1

xkyk.

This is not the relation µy = mµx, but to make things concrete we should verify that we can
find an example for which µy 6= mµx. For this, let’s take two points (x1, y1) = (0, 1) and
(x2, y2) = (1, 2). Then

N∑
k=1

x2k = 1, and
N∑
k=1

xkyk = 2,

so m = 2. On the other hand, µx = 1/2 and µy = 3/2, so µy = 3µx. In particular, µy 6= 2µx,
so we see that the relation doesn’t generally hold.

2. For (a), we compute

(V F T )(V F T )T = V F TFV T = V (F TF )(F TF )−1 = V.
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For (b), we observe that for any matrix A, the diagonal entries of the product AAT are always
the Euclidean norms of the row vectors of A, and these norms must be positive unless there
is a row of zeros. For A = V F T , we get positive values unless (F TF )−1F T has a row of
zeros. This would mean the matrix F (F TF )−1 has a column of zeros, which cannot be true
because ~v = 0 is the only vector in N (F (F TF )−1). (This is because N (F ) = 0, by linear
independence of its columns, and so ~v ∈ N (F (F TF )−1) if and only if (F TF )−1~v = 0, which
implies ~v = 0.)

3. We begin by looking for dimensionless products

π = π(r, g, µ,∆ρ, v) = ragbµc∆ρdve,

with dimensions
1 = LaLbT−2bM cL−cT−cMdL−3dLeT−e,

and dimensions equations

L : 0 = a+ b− c− 3d+ e

T : 0 = − 2b− c− e
M : 0 = c+ d.

In matrix form this is

 1 1 −1 −3 1
0 −2 −1 0 −1
0 0 1 1 0




a
b
c
d
e

 =

 0
0
0

 .

In row reduced echelon form,

 1 0 0 −3
2

1
2

0 1 0 −1
2

1
2

0 0 1 1 0




a
b
c
d
e

 =

 0
0
0

 .

We have

a =
3

2
d− 1

2
e

b =
1

2
d− 1

2
e

c = − d.

For π1, we choose e = 0 and d = 1, which gives a = 3
2
, b = 1

2
, and c = −1. We conclude

π1 =
r3/2g1/2∆ρ

µ
.
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For π2, we choose e = 1 and d = 0, which gives a = −1
2
, b = −1

2
, and c = 0. We conclude

π2 =
v
√
rg
.

Buckingham’s Theorem and the Implicit Function Theorem suggest there exists a function
φ so that

π2 = φ(π1),

or equivalently
v
√
rg

= φ(
r3/2g1/2∆ρ

µ
)⇒ v =

√
rgφ(

r3/2g1/2∆ρ

µ
).

The fit for Part (b) is carried out in the MATLAB M-file marblefit.m.

%MARBLEFIT: MATLAB script M-file that fits the data in
%marbledata to a choice of dimensionless products
%
%define data
marbledata;
pi1 = delrho.*r.ˆ(3/2)*sqrt(g)./mu;
pi2 = v./sqrt(r*g);
p = polyfit(pi1,pi2,1)
plot(pi1,pi2,’o’,pi1,p(1)*pi1+p(2))
axis equal
title(’Plot of \pi 2 vs. \pi 1 for Marbles Data’,’FontSize’,15)
%
%model
v = @(r,g,mu,delrho) p(1)*rˆ2*g*delrho/mu+p(2)*sqrt(r*g);
%prediction
v(.0065,9.81,15,672.8)

The plot this creates appears in Figure 1.

We find that
φ(π1) = .1283π1 + .0317,

and so

v = .1283(
r2g∆ρ

µ
) + .0317

√
rg.

For Part (c), we find v = .0104.

By the way, it’s easy to verify, using Newtonian mechanics, that the theoretical expression
for v is

v =
2r2g∆ρ

9µ
.

This would correspond with p1 = 2
9

and p2 = 0 in our fit.
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Figure 1: Figure for the marbles data.

4. First, we look for dimensionless products

π = π(ρ, µ, r, v, η, P ) = ρaµbrcvdηeP f ,

which gives
1 = MaL−3aM bL−bT−bLcLdT−dM fL2fT−3f .

This gives the dimensions equations

L : 0 = − 3a− b+ c+ d+ 2f

M : 0 = a+ b+ f

T : 0 = − b− d− 3f.

This corresponds with the matrix equation

 −3 −1 1 1 0 2
1 1 0 0 0 1
0 −1 0 −1 0 −3




a
b
c
d
e
f

 =

 0
0
0

 .

Using MATLAB to put this matrix in row reduced echelon form we find

A =

 1 0 0 −1 0 −2
0 1 0 1 0 3
0 0 1 −1 0 −1

 .
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This gives

a = d+ 2f

b = − d− 3f

c = d+ f.

For π1 we take e = 1 and all the other exponents 0, so that π1 = η. For π2 we take f = 0,
e = 0, and d = 1 to obtain π2 = ρvr

µ
(the Reynold’s number). For π3 we take f = 1,

e = 1, and d = 1 to obtain π3 = rPρ2

µ3
. By Buckingham’s Theorem and the Implicit Function

Theorem we expect there to exist a function φ so that

π3 = φ(π1, π2),

or

P =
µ3

rρ2
φ(η,

ρvr

µ
).

For Part (b) we want to choose re = 2 and values ρe, µe, ve, and ηe, so that

ηe = η = .5
ρevere
µe

=
ρvr

µ
= 6.25× 107.

Since re = 2 is fixed, we must choose ρe, ve, and µe so that

ρeve
µe

= 3.1250× 107.

If we want to stick with the same fluid (air), we can set

ve =
3.1250× 107 × 2.00× 10−5

1.25
= 500m/s.

(This large value suggests that we might want to work with a different fluid, but that’s not
necessary for the problem.)

5. For (a) the most systematic thing to do is to notice that the system ~v = α1~v1 + α2~v2 +
α3~v3 + α4~v4 can be expressed as

~v = M~α,

where M = (~v1 ~v2 ~v3 ~v4). For v we need ~v = (1, 0, 0, 0)T , and we find ~α = (−1, 1, 1,−1),
giving

v =
π2π3
π1π4

.

Likewise, for g we need ~v = (0, 1, 0, 0)T , and we find ~α = (−1, 2, 1,−2), giving

g =
π2
2π3
π1π2

4

.

The last two are immediate, h = π3 and t = π4.
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For (b), we write out

−1

2

π2
2π3
π1π2

4

· π
2
4

π3
+
π2π3
π1π4

· π4
π3

+ 1 = −π
2
2

π1
+
π2
π1

+ 1.

We see that π3 and π4 cancel out, and we knew this had to happen, because ψ is independent
of π3 and π4.

For (c), the dimensioned products associated with ~v3 and ~v4 would be

π3 = vght; π4 =
vht

g
.

We see that [π3] = L3T−2 and [π4] = LT 2. Proceeding as in our proof, we associate with π3
and π4 the vectors ~u3 = (3,−2) and ~u4 = (1, 2). We set

B =

(
3 −2
1 2

)
and reduce to row echelon form

B̃ =

(
1 0
0 1

)
.

(We’re using B here, because A has a specific meaning for us.) This now corresponds with
a new pair of dimensioned products, the first with dimension length and the second with
dimension time.

Explicitly, the first step of the row reduction would be to divide the first row by 3, and this
corresponds with replacing π3 with π

(1)
3 = (vght)1/3. For the second step, we would multiple

(the new) row 1 by -1 and add the result to row 2. This corresponds with replacing π4 with

π
(1)
4 = π4/π3 = v2/3g−4/3h2/3t2/3. At this point, we have

B̂ =

(
1 −2

3

0 8
3

)
.

We multiply the second row by 3
8
, which corresponds with replacing π

(1)
4 with π

(2)
4 =

v1/4g−1/2h1/4t1/4. And last we multiply row 2 by 2
3

and add the result to the first row,

which corresponds with replacing π
(1)
3 with π

(2)
3 = π

(1)
3 (π

(2)
4 )2/3 = (vht)1/2. I.e., we get to

π
(2)
3 = (vht)1/2; [π

(2)
3 ] = L

π
(2)
4 = v1/4g−1/2h1/4t1/4; [π

(2)
4 ] = T.

Additional notes. For Part (c), the goal above was to mimic our proof from class of
Buckingham’s Theorem, but it might also be instructive to see how this plays out with linear
combinations of vectors rather than row operations. (Keeping in mind that the two things
are ultimately equivalent.) First, for ~u3 and ~u4 above, we emphasize the correspondence

~u =α1~u3 + α2~u4

π =πα1
3 πα2

4 .
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I.e., this works just as with vectors ~v associated with the variables in dimensionless products.
In reducing B to B̃, the first row operation is to replace the first row in B with the row divided
by 1/3. In terms of ~u3 and ~u4, this corresponds with replacing ~u3 with ~u

(1)
3 = 1

3
~u3 = (1,−2/3),

and in terms of π3 and π4 this corresponds with replacing π3 with π
(1)
3 = π

1/3
3 = (vght)1/3.

The next row operation is to multiply the first row by −1 and add the result to the second
row. In this case, we are replacing ~u4 with ~u

(1)
4 = −~u(1)3 + ~u4 = (0, 8/3). Correspondingly,

we replace π4 with π
(1)
4 = (π

(1)
3 )−1π4 = (vght)−1/3(vht/g) = (vht)2/3/g4/3. Notice that after

this step

[π
(1)
3 ] = [(vght)1/3] = LT−2/3

[π
(1)
4 ] = [(vht)2/3/g4/3] = T 8/3,

as expected. The remaining row operations can be explained similarly.

6. First, [k1y] = MLT−2, so [k1] = MT−2. Likewise, [k3y
3] = MLT−2, so [k3] = ML−2T−2.

Now we set

τ =
t

A
, Y (τ) =

y(t)

B
,

so that

y′(t) = B
d

dt
Y (τ) = BY ′(τ)

dτ

dt
=
B

A
Y ′(τ),

and

y′′(t) =
B

A2
Y ′′(τ).

We have, then,

m
B

A2
Y ′′ = −k1BY + k2B

3Y 3 ⇒ Y ′′ = −k1
A2

m
Y + k2

A2B2

m
Y 3.

If we choose A =
√

m
k1

and B =
√

k1
k2

(with dimensions [A] = T and [B] = L) we have

Y ′′ = −Y + Y 3.

7. We introduce the non-dimensional variables

τ =
t

A
; X(τ) =

x(t)

B
; Y (τ) =

y(t)

C
,

so that the equations become

B

A2

d2X

dτ 2
= − b

√
B2

A2
X ′2 +

C2

A2
Y ′2

B

A
X ′

C

A2

d2Y

dτ 2
= − g − b

√
B2

A2
X ′2 +

C2

A2
Y ′2

C

A
Y ′,
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and

d2X

dτ 2
= − b

√
B2X ′2 + C2Y ′2X ′

d2Y

dτ 2
= − A2

C
g − b

√
B2X ′2 + C2Y ′2Y ′.

One reasonable choice is B = C = 1
b
, and A = 1√

bg
. This gives

d2X

dτ 2
= −

√
X ′2 + Y ′2X ′

d2Y

dτ 2
= − 1−

√
X ′2 + Y ′2Y ′.

The initial conditions become

X(0) = 0

Y (0) = bh0

X ′(0) =

√
b

g
|~v0| cos θ

Y ′(0) =

√
b

g
|~v0| sin θ.
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