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ABSTRACT OF THE DISSERTATION

On Tensor Categories Arising from Quantum Groups and

BMW-Algebras at Odd Roots of Unity

by

Eric C. Rowell

Doctor of Philosophy in Mathematics

University of California San Diego, 2003

Professor Hans Wenzl, Chair

We consider the premodular (fusion) categories associated to quantum groups

corresponding to Lie algebras so2k+1 of type B and q-Brauer algebras at odd roots

of unity. The motivating problem is to determine if the braid group representa-

tions on the morphism spaces in these categories are unitarizable for some choice of

q. Whereas it was believed that the premodular categories associated to q-Brauer

algebras did give rise to unitarizable braid representations, it was only conjectured

that this was the case for the quantum group situation. We first prove that these

two classes of categories are tensor equivalent. Then we prove the surprising re-

sult that the braid group representations are never unitarizable for any choice of

q2 a primitive odd root of unity for either of these categories. This result also

implies that no C∗-tensor categories exist with the same Grothendieck semiring

as these categories. Our computations also allow us to answer the question of

modularizability for these categories when the rank k is not divisible by 4.

xi



Chapter 1

Introduction

Let Uqg be the quantum group associated to the simple Lie algebra g and

assume q is a primitive 2lth root of unity. If we take the usual representation

category for the quantum group and specialize at this choice of q, the highest

weight representations are no longer irreducible or even semisimple in general.

However, using Andersen’s [A] category T of tilting modules over Uqg one can

remedy the situation by taking a certain semisimple quotient category F = T/I

where I is a tensor ideal. In the general case F depends on a choice of q and is

known to be a premodular category. Several questions arise in connection with

these categories. The first of which is a question of classification: How does F

relate to premodular categories constructed by other means? The second question

is of interest in the field of operator algebras: When does F have the structure of a

C∗-algebra? The third question is of interest in low-dimensional topology: When

is the category modular or, failing that, modularizable?

Kirillov Jr. [Ki] has defined a ∗-operation on the morphisms in T and conjec-

tured that in certain cases the form (f, g) = Trq(f
∗g) is positive semidefinite, and

therefore the space of morphisms of F has the structure of a C∗-category. Here

Trq is the categorical q-trace. This conjecture would imply that for any object

W ∈ F the representations of Artin’s braid group Bn on EndF(W⊗n) are unita-

rizable, since EndF(W⊗n) is a Hilbert space with the form above. Wenzl [W2]

1
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has shown that this indeed is the case for all Lie types for certain choices of q.

Specifically, if d is the ratio of square lengths of a short root of g to a long one and

l is greater than the dual Coxeter number of g then the conjecture is true for the

choice q = eπi/dl.

In this paper we will fill out the picture by considering the cases where g is of

Lie type B and q is a 2lth root of unity with l odd. That is, we set q = ezπi/l with

l odd and gcd(z, 2l) = 1. Note that in this situation d = 2, which is not covered in

[W2]. We answer the classification question by showing that the quotient category

F is tensor equivalent to a tensor category V derived from certain semi-simple

quotients of the BMW -algebras of Wenzl, Birman and Murakami [BW, M]. In

a recent paper by Tuba and Wenzl [TuW2], it is shown that the categorical q-

dimension on V is determined up to a sign–assuming there is a braiding. By

analyzing the structure of the Grothendieck semiring of F (or V) we show that our

abstract fusion category has a unique positive q-character (a generalization of q-

dimension), and that there is no choice of q (for l satisfying 2(2k+1) < l) for which

the categorical q-dimension of V is equal to (plus or minus) the unique positive

q-character found. Now having a positive q-dimension is a necessary condition

for the form ( , ) to be positive semi-definite, as the value of the q-trace on any

idempotent is equal to the q-dimension of its image. So we find that there is no

C∗ structure possible on the category as the morphism spaces in this category are

not Hilbert spaces. The modularizability question is a little more hopeful. Using

a recent criterion of Brugiéres [Br] we get good results in this direction as well.

Here is a more explicit summary of this paper. Chapter 2 contains mainly

definitions that could be found in other papers. In the third chapter we find the

unique positive q-character for the Grothendieck semiring of the category F and

an involution of the Grothendieck semiring that preserves q-characters up to a

change of sign. This provides us with an invertible object in the category besides

the identity. (That is, an object whose equivalence class in the Grothendieck

semiring is invertible.) In chapter 4 we briefly discuss the BMW -algebra and

associated tensor category in which we are interested. In the fifth chapter we give
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the proof of equivalence of the categories F and V. In chapter 6 we give the two

main consequences of this equivalence by using the unique positive q-character

from chapter 3 to show the failure of positivity, and show that if the rank is not

divisible by 4 the category F is not modularizable. We also mention some ideas

for future research.



Chapter 2

Preliminaries

2.1 Quantum Groups

In this section we define what we mean by a quantum group. Our definitions

follow [Lu], and proofs can be found in the literature such as [D] and [ChPr].

We begin with the root system Φ for the Lie algebra g of rank k with Cartan

matrix A = (aij), root basis (or simple roots) Π = {αi}k
i=1, positive roots Φ+ =

NΠ∩Φ and root lattice Q = ZΠ. We embed the root system in some Rn and choose

a non-degenerate form 〈 , 〉 on Rk such that 2〈αi, αj〉/〈αj, αj〉 = aij, normalized

so that 〈α, α〉 = 2 for short roots. Define the coroot basis Π̌ = {α̌i}k
i=1 where

α̌i := 2αi/〈αi, αi〉, so we have a coroot system Φ̌ and positive coroots Φ̌+ also

embedded in Rn. Let W be the Weyl group generated by the reflections on Rn:

si(v) := v − 〈v, α̌i〉αi. Although we have identified the roots and coroots with

vectors in Rn, we usually think of the coroots as elements of the Cartan subalgebra

h and the roots as linear functionals on h via the form 〈 , 〉.
Fix a formal variable q and define qi = qdi where di = 〈αi, αi〉/2. Denote the q-

number qn−q−n

q−q−1 by [n], and let [n]i represent the same formula with q replaced by qi.

Now define A(g)q to be the R(q)-algebra with generators Ei, Fi, hi, h
−1
i (1 ≤ i ≤ k)

4
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and relations:

[h±1
i , h±1

j ] = 0, hih
−1
i = 1,

hiEjh
−1
i = qaijEj, hiFjh

−1
i = q−aijFj,

[Ei, Fj] = δij
hdi

i − h−di
i

qi − q−1
i

,

1−aij∑
t=0

(−1)t

[
1− aij

t

]

i

E
1−aij−t
i EjE

t
i = 0, i 6= j (quantum Serre relation)

where [
a

b

]

i

=
[a]i!

[b]i![a− b]i!

denotes the qi-binomial coefficient. A similar quantum Serre relation holds among

the Fi.

2.1.1 Hopf Algebra Structure

Next we define Hi = hdi
i , and if µ =

∑
miαi ∈ Q (mi integers) then Hµ =

∏
Hmi

i . A(g)q has the following Hopf algebra structure defined on generators:

Comultiplication:

∆(Ei) = Hi ⊗ Ei + Ei ⊗ 1,

∆(Fi) = 1⊗ Fi + Fi ⊗H−1
i ,

∆(hi) = hi ⊗ hi

Antipode:

S(Ei) = −H−1
i Ei,

S(Fi) = −FiHi,

S(hi) = h−1
i

Counit:

ε(Ei) = ε(Fi) = 0,

ε(hi) = 1.
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These structures satisfy a number of compatibility conditions that can be found

in any book on Hopf algebras. Furthermore A(g)q is quasitriangular, which means

that there is an invertible element R called the universal R-matrix in some com-

pletion of A(g)q ⊗ A(g)q that intertwines the comultiplication and the opposite

comultiplication and satisfies certain other compatibility conditions. The impor-

tance of the R-matrix will be discussed in Section 2.5. Explicit formulas for the

universal R-matrix can be found in [Lu].

Now we define Uqg to be the quasitriangular Hopf subalgebra of A(g)q generated

by the divided powers E
(p)
i = Ep

i /[p]i!, F
(p)
i = F p

i /[p]i! (where p ≥ 1) and the h±1
i ,

with the relations induced from A(g)q. Uqg is now well-suited for specialization to

q a root of unity, and the R-matrix specializes to Uqg as well.

2.1.2 Type B Data

Now we restrict our attention to g of type B; that is, g = so2k+1. Let {εi} be

the standard basis for Rk. We fix a root basis

Π = {αi}k
1 = {ε1 − ε2, ε2 − ε3, . . . , εk − εk+1, εk}

so the root lattice Q = spanZ{αi}k
1 is just Zk. We also record that the set of

positive roots is

Φ+ = {εs ± εt, εu : s < t}.
The form 〈 , 〉 is twice the usual dot product on Rk so that the square length of

long roots is 4, and 2 for short roots. Thus the coroot basis Π̌ = {α̌} has

α̌i =





1
2
(εi − εi+1) i = 1, . . . , k − 1

εk i = k

Note that the coroots for type B are the roots of type C in the classical Lie algebra

case, but here we must take care as the normalization of the form is not the classical

one. We will see where this leads to subtitles later. The Weyl group W is the semi-

direct product of Sk and (Z2)
k and acts on Rk via permutations and sign changes.

Throughout this paper we will denote Uqso2k+1 simply by U .
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2.2 Representations of U

For our choice of a root basis we have the following fundamental weights:

Λi =





∑
1≤j≤i−1 εj i ≤ k − 1

1
2

∑
1≤j≤k εi i = k

and the dominant weights P+ = spanN{Λj}k
1 which reside in the dominant Weyl

chamber. Note that 〈Λi, α̌j〉 = δij, so that the fundamental weights are dual to

the coroots. The weight lattice P = spanZ{Λj}k
1 is then seen to be Zk

⋃
(Λk +Zk).

For convenience of notation we introduce the function on P :

p(λ) =





1 if λ ∈ Zk

−1 if λ ∈ (Λk + Zk)

We refer to a weight λ as integral, resp. half-integral, if p(λ) = 1, resp. p(λ) = −1.

The weights are usually represented as k-tuples, e.g. Λk = (1/2, . . . , 1/2). There is

a one-to-one correspondence between the dominant weights and finite-dimensional,

simple, integrable U -modules. A finite-dimensional integrable U -module is a C-

vector space V satisfying the following:

V =
⊕

λ∈P

V λ, hi|V λ = q〈α̌i,λ〉1V λ

E
(p)
i (V λ) ⊂ V λ+pαi , F

(p)
i (V λ) ⊂ V λ−pαi

Since these are the only modules we will consider, we will just refer to them as

U -modules with this understanding. The action of U on such a module is still

well-defined when we specialize q at any nonzero complex number. Furthermore,

the dual of a simple module Vλ is defined via the antipode. It is denoted V ∗
λ and

has highest weight −w0(λ) where w0 is the longest element of the Weyl group.

For type B we have that w0 = −1, that is, the element of the Weyl group that

changes the sign of each coordinate. So we have Vλ
∼= V ∗

λ in the present case. We
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also have a trivial one-dimensional module where the action of U is by the counit.

Using the comultiplication, we can define an action of U on the tensor product

of any two U -modules V and W by ∆(u)(v ⊗ w) for u ∈ U , v ∈ V and w ∈ W .

The compatibility conditions of the Hopf algebra structure imply that the tensor

product is associative if we identify isomorphic modules. Furthermore, the action

of the R-matrix is well-defined on any tensor product of two U -modules as all but

finitely many of its terms act as zero on such a tensor product (see [Lu] for details).

More will be said about this in Section 2.5. It is well-known (see [BK]) that for

|q| 6= 1 (the generic case) the tensor product rules for U are the same as those

for the classical Uso2k+1 representation category. A representation category for a

Hopf algebra is the category whose objects are a set of modules closed under the

tensor product and direct sums, and the morphisms are the intertwining operators

among them. Our categories will always include the trivial module and be closed

under the operation of taking dual modules.

2.3 Classical Representation Theory, Abridged

For generic q the representation (tensor) category of U can be understood from

the classical theory, so in this section we will summarize the necessary facts from

the representation theory of the algebra Uso2k+1 and the Lie group O(2k+1) which

will be used in later chapters. This material can be found in any introductory text

on Lie groups, such as [GWa] or [Hu], and goes back at least to Weyl [Wy].

2.3.1 The Lie Algebra so2k+1

As we observed above, the irreducible finite-dimensional integral highest weight

modules of Uso2k+1 are in one-to-one correspondence with the elements of P+. Each

irreducible representation Vλ has a multiset of weights P (λ) which correspond to

the weight-space decomposition of Vλ with respect to the action of the Cartan

subalgebra. The multiset P (λ) lies in the ball of radius |λ| (ordinary euclidian
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distance) centered at the origin, and the weights in the W -orbit of λ appear with

multiplicity one. The other weights are of the form λ − α for some α ∈ Q. To

decompose the tensor product of two irreducible modules Vλ and Vµ one looks at

the intersection {ν = µ+κ : κ ∈ P (λ)}⋂
P+ which contains the dominant weights

of the irreducible submodules

P+(Vλ ⊗ Vµ) = {ν ∈ P+ : Vν ⊂ Vλ ⊗ Vµ}.

We do not formulate the precise algorithm to determine which Vν do occur nor

the multiplicities, but we can say that the irreducible module Vµ+w(λ) appears with

multiplicity one, where w is any element in the Weyl group such that w(λ)+µ ∈ P+.

(This follows from the outer multiplicity formula, see e.g. [GWa] Corollary 7.1.6).

Moreover, P+(Vλ ⊗ Vµ) is contained in the ball of radius |λ| centered at µ, and

p(ν) = p(λ)p(µ) for any ν ∈ P+(Vλ ⊗ Vµ). In other words, all weights of simple

submodules of Vλ ⊗ Vµ are integral if λ and µ are both integral or half-integral,

and half-integral otherwise. We write: Vλ ⊗ Vµ =
⊕

ν mν
λµVν where mν

λµ is the

multiplicity of Vν in Vλ ⊗ Vµ.

2.3.2 The Lie Group O(2k + 1)

The irreducible representations of the compact group O(2k +1) are labelled by

Ferrers diagrams with at most 2k + 1 boxes in the first two columns. The identity

component of O(2k +1) is SO(2k +1), so the Lie algebra of either group is so2k+1.

The representations of SO(2k+1) are the integral weight representations of so2k+1,

and any irreducible representation of O(2k + 1) is determined by the action of −I

(which is not in SO(2k + 1)) and the restriction to SO(2k + 1). The restriction

rules from O(2k + 1) to SO(2k + 1) go as follows: for λ any Ferrers diagram with

at most 2k + 1 boxes in the first two columns, define λ to be the diagram with

min{2k + 1−λ′1, λ
′
1} boxes in the first column, where λ′1 is the number of boxes in

the first column of λ. So λ will have at most k rows, and by filling in zeros if needed,

λ can be made into a dominant SO(2k+1) weight by writing (λ1, λ2, . . . , λk) where
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λi is the number of boxes in the ith row of the diagram λ. Then the restriction

of the irreducible O(2k + 1)-module Wλ to SO(2k + 1) is the irreducible module

Vλ. Now the action of −I on any irreducible module Wλ is just (−1)|λ|, so we have

the following algorithm for decomposing the tensor product of two irreducible

O(2k + 1)-modules Wλ and Wµ. One decomposes the SO(2k + 1)-module Vλ ⊗ Vµ

into irreducible submodules Vνi
and takes the corresponding O(2k + 1)-modules

whose labels (Ferrers diagrams) have the same parity as |λ|+ |µ|.

2.4 Tilting Modules

In this section we develop some of the framework necessary to obtain the cat-

egorical structures the definitions of which we will postpone until Chapter 3. To

describe the modifications necessary to obtain a semisimple tensor category from

Rep(U) at a root of unity, we begin with the Weyl modules discussed in Section

2.1. Consider the q generic case for a moment. For every λ ∈ P+ there is a unique

irreducible Weyl module Vλ. The module corresponding to weight 0 is the trivial

module V0 = 11. There exists a basis so that the action of the generators of U

is given by matrices with entries in Z[q, q−1] and in particular is well-defined for

any nonzero complex q. The Weyl module VΛk
is called the fundamental mod-

ule, as all Weyl modules appear in some tensor power of VΛk
.Now assume q is a

primitive 2lth root of unity l odd; so that ql = −1. Later we will see that the

case where ql = 1 is covered as well, as the change of variables q → −q does not

change the basic structure. We define a tilting module to be a U -module T that is

a direct summand of some tensor power of VΛk
or a direct sum of such modules.

The set of tilting modules T can be given the structure of a ribbon category. We

will describe this in more detail later. For any U -module W we define the cate-

gorical q-trace Trq on End(W ) by Trq(f) = Tr(fH2ρ), where H2ρ is a canonical

element of U associated with the quasi-triangularity of the quantum group and the

so-called “quantum Casimir” (see [Lu]). Here 2ρ is the sum of the positive roots.

There is an equivalent definition for the trace which can be described entirely in
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the language of categories and uses the ribbon structure on T, which will be de-

fined in Section 3.1. This q-trace gives rise to a categorical q-dimension defined by

dimq(T ) = Trq(1T ) where 1T is the identity morphism on T . For a Weyl module

Vλ and a fixed q ∈ C− {0,±1} the q-dimension takes the form:

dimq(Vλ) =
∑
w∈W

ε(w)q2〈w(λ+ρ),ρ〉 =
∏

α∈Φ+

[〈λ + ρ, α〉]
[〈ρ, α〉] .

A proof of this formula can be found in [A] for quantum groups. The canonical

q-dimension function dimq has two important properties (also shown in [A]):

dimq(11) = 1 (2.1)

dimq(T1 ⊗ T2) = dimq(T1) dimq(T2) (2.2)

Property 2.2 is the critical property and will be mentioned again in the context of

q-characters in Section 3.4.

The q-dimension gives us a way of recovering semisimplicity, as the set of tilting

modules T with dimq(T ) = 0 forms a tensor ideal (see the properties of tilting

modules below). Such modules are called negligible. To facilitate this program we

must extend the Weyl group as follows.

Definition 2.1. Consider the affine reflection in Rk through the hyperplane {x ∈
Rk : 〈x, ε1〉 = l}. If we adjoin this reflection tl to the Weyl group W we get the

affine Weyl group Wl. Explicitly tl(λ) = λ + (l − 〈λ, ε1〉)ε1.

Each element w of Wl can be expressed as a product of simple reflections si and

tl, and furthermore any decomposition of w into a product of simple reflections will

always have the same number of terms modulo 2. Thus the usual sign function ε(w)

is well-defined if we require ε(tl) = −1. In addition to the usual action of W , we

will need the modified “dot” action of Wl on the weight lattice: w ·λ = w(λ+ρ)−ρ.

For example,

tl · λ = λ + ρ + (l − 〈λ + ρ, ε1〉)ε1 − ρ = λ + (l − 〈λ + ρ, ε1〉)ε1
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and for a simple reflection si we have

si · λ = λ− 〈λ + ρ, αi〉αi

Let D0 be the closure of the region in Rk containing the origin bounded by the

hyperplanes Hi,Hl fixed under the dot action of Wl, so that D0 is a fundamental

domain for this action. For l odd define the fundamental alcove Cl as the weight

lattice P intersected with the interior D0, that is, Cl = {λ ∈ P+ : 〈λ + ρ, ε1〉 < l}.
We also define Cl = P+ ∩D0 = {λ ∈ P+ : 〈λ + ρ, ε1〉 ≤ l}. Explicitly we have

Cl = {λ ∈ Zk ∪ (Zk + Λk) :
l − 2k

2
≥ λ1 ≥ λ2 ≥, . . . ,≥ λk ≥ 0}

and we can compute |Cl| = 2
( l−1

2
k

)
. Observe that any µ in P+ is conjugate via Wl

to a unique κ ∈ D0 and that if w ·µ = κ with κ ∈ Cl the element w is also unique.

We will always require (as other authors do) that the tilting module with weight

ρ + Λk is in the fundamental alcove. This puts a lower bound on l in terms of the

rank k: l ≥ 4k+1. The category T of tilting modules have the following important

properties (see [A] and [AP]):

1. Any tensor product of tilting modules is again a tilting module.

2. For any dominant weight µ ∈ P+ there is a unique indecomposable tilting

module Tµ.

3. Tµ = Vµ (a Weyl module) for any µ ∈ Cl, and these modules are simple.

4. Every tilting module is a direct sum of indecomposable tilting modules.

5. Every T ∈ T can be expressed as T = CT ⊕ C ′
T where CT is a sum of

indecomposable modules Tµ with µ ∈ Cl and C ′
T is a sum of indecomposable

modules Tκ with κ ∈ P+ \ Cl.

6. dimq Tλ = 0 if and only if λ ∈ P+ \ Cl.

7. The set of negligible modules I = {T ∈ T : dimq T = 0} is a tensor ideal in

T.
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8. (See Chapter 3 for definitions) F = T/I is a semisimple, ribbon Ab-category

with simple objects labelled by dominant weights λ ∈ Cl.

9. Every simple object in F appears as a subobject of a tensor power of the

fundamental module VΛk
.

The interested reader should see the references above for proofs, although we make

the following remarks:

Remark 2.2. To see part of property 6 note that if λ ∈ Cl\Cl, that is, 〈λ+ρ, ε1〉 = l

then the factor [〈λ + ρ, ε1〉] of the numerator of dimq(Vλ) vanishes for q any 2lth

root of unity. (See property 3 above.) Since (λ)1 ≥ (λ)2 ≥ . . . ≥ (λ)k, we further

observe that if λ ∈ Cl and α = εs±εt is a long root, 〈λ+ρ, α〉 ≤ 〈λ+ρ, ε1+ε2〉 < 2l

and is even, whereas if α = εu is a short root, 〈λ + ρ, α〉 ≤ 〈λ + ρ, ε1〉 < l. Now for

q a primitive 2lth root of unity, the q-number [n] = 0 if and only if l|n. Thus one

sees that dimq vanishes on Cl \ Cl and is non-zero on Cl.

Remark 2.3. Property 7 above is crucial: it says that Vλ ∈ I if λ ∈ Cl \ Cl, and

by virtue of property 1 any submodule of Vλ ⊗ T also has q-dimension 0. The

set of Vλ with λ ∈ Cl \ Cl in fact generates the ideal I. For, every tilting module

is a submodule of V ⊗n
Λk

or a sum of such submodules and thus by tensoring some

negligible Vλ with an appropriate tensor power V ⊗n
Λk

we can get every module in

the ideal I. This shows that every tilting module Tµ with µ 6∈ Cl is in I.

The quotient (functor) map of T onto F is defined by projecting each T ∈ T

orthogonally onto its component CT which is a direct sum of simple Weyl modules

by the third property. The simple objects of F are the images of these simple Weyl

modules Vµ with µ ∈ Cl, and we will abuse notation by continuing to denote them

by Vµ. Since Cl is a finite set, there are finitely many simple objects in F. The

image of a morphism f : T1 → T2 under the quotient map is (the class of) the

morphism p2 ◦ f ◦ p1 : CT1 → CT2 , where pi is the orthogonal projection of Ti onto

CTi
with kernel C ′

Ti
. We denote the space of morphisms between two objects in F

by HomF(CT1 , CT2).
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The tensor product rules (or fusion rules) on F can now be described as follows:

Proposition 2.4. [AP] Let mν
λµ be the multiplicity of the simple module Vν in

Vλ ⊗ Vµ considered as so2k+1-modules. Then as objects in F one has:

Vλ ⊗ Vµ =
⊕
ν∈Cl

Nν
λµVν

where

N ν
λµ =

∑
Wν

ε(w)m
w·(ν)
λµ

and Wν = {w ∈ Wl : w · ν ∈ P+}.

Notice that if ν is any element of P on the boundary of D0 all mw·ν
λµ will cancel

out, since both w and siw (or tlw) will be in Wν and have opposite signs. Notice

also that p(λ) = p(w · λ) for all w ∈ Wl, that is, the dot action carries integral

weights to integral weights and half-integral weights to half-integral weights. Since

Weyl modules are self-dual (for so2k+1), and the tensor product in F is commutative

(via the braiding) the following shows that the N ν
λµ (the fusion coefficients) are

symmetric in all three indices:

N ν
λµ = dim HomF(Vν , Vλ ⊗ Vµ) = dim HomF(11, Vλ ⊗ Vµ ⊗ V ∗

ν ).

In general it is not easy to compute the N ν
λµ as it is already difficult to compute the

classical multiplicities mν
λµ; however, for our analysis we only require two explicit

decomposition rules–both of which were already known to Brauer. We begin with

the decomposition rules for tensoring with the generating module VΛk
.

Example 2.5. We have that VΛk
is a minuscule representation (all weights are

conjugate under the Weyl group) the simple decomposition as a so2k+1-module is:

VΛk
⊗ Vλ =

⊕

W λ
k

Vλ+w(Λk)

where W λ
k = {w ∈ W : λ + w(Λk) ∈ P+} Note that W (Λk) = {1

2
(±1, . . . ,±1)},

so all λ + w(Λk) are in Cl, and the decomposition in our quotient category F is
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gotten by discarding the Vλ+w(Λk) ∈ Cl \ Cl. That is, for λ, ν ∈ Cl

N ν
Λkλ =





1 if ν = λ + w(Λk) some w ∈ W

0 otherwise
(2.3)

By the following arguement we see that there exists an odd integer s such that

every simple object in F appears in V ⊗s
Λk

or V ⊗s+1
Λk

. Every weight λ ∈ Cl can

be expressed as a sum of weights in W (Λk), so every Vλ appears in some tensor

power of VΛk
by an induction using the multiplicity formula above. Furthermore,

the trivial representation 11 appears in V ⊗2
Λk

so once Vλ appears in an odd (resp.

even) tensor power of VΛk
it will appear in every odd (resp. even) tensor power

thereafter.

The vector (or defining) representation of so2k+1 (as well as that of U) has

highest weight Λ1 = ε1. We will only need to know the complete decomposition

for tensoring VΛ1 with simple objects whose highest weight has integer entries as

follows:

Example 2.6. The weights of VΛ1 are the zero weight together with W (Λ1) = {±εi :

1 ≤ i ≤ k}. The decomposition algorithm as a so2k+1-module is (for integral

weights µ):

VΛ1 ⊗ Vµ = δ(µ)Vµ +
⊕
W1

Vµ+w(Λ1)

where W1 = {w ∈ W : w(Λ1) ∈ P+} and δ(µ) = 1 if 〈µ, αk〉 > 0 and zero otherwise.

Since the dominant weights on the hyperplane Hl all have integer entries and µ is

distance at least 1 from Hl, we conclude that P+ ∩ (µ + W (Λ1)) ⊂ Cl. So using

the proposition above we see that as objects in the category F the decomposition

is gotten by discarding those Vµ+w(Λ1) with µ + Λ1 on Hl. So for µ, ν ∈ Cl ∩Zk we

compute:

N ν
Λ1µ =





1 if ν = µ± εi for some 1 ≤ i ≤ k

1 if µ = ν and 〈µ, εk〉 > 0

0 otherwise

(2.4)
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The various categories F have slightly different properties depending on the

root of unity q. For example, if q = ezπi/l with z odd the q-dimension function

defined above becomes:

dimq(Vλ) =
∏

α∈Φ+

sin(〈λ + ρ, α〉zπi/l)

sin(〈ρ, α〉zπi/l)
.

Observe that for any z there are choices of λ and α ∈ Φ+ such that 〈λ + ρ, α〉 > l,

so there is no guarantee that the q-dimension is positive on Cl. In fact we will see

later that there is no choice of z such that dimq is positive for all λ ∈ Cl.

2.5 Action of Bn on EndF(W⊗n)

Artin’s braid group Bn is the group on n− 1 generators σ1, . . . , σn−1 satisfying

the two relations:

1. σiσi+1σi = σi+1σiσi+1

2. σiσj = σjσi if |i− j| ≥ 2.

A typical generator for the topological presentation of Bn is given in Figure 2.1.

. . . . . .

i1 i+1 n

Figure 2.1: The generator σi

The fact that this presentation is isomorphic to the topological braid group

generated by n arcs strung between two rows of n points is the celebrated theorem

of Artin.
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In Section 2.1 we mentioned an element R in a completion of U ⊗ U that

intertwines the coproduct and the opposite coproduct. From this element we can

define for any two U -modules V and W a U -module isomorphism ŘV W : V ⊗W →
W ⊗ V by

ŘV W (v1 ⊗ w1) = PV W R(v1 ⊗ w1)

where PV W interchanges the factors in V ⊗W . This shows that the tensor product

is commutative on isomorphism classes of modules. We are most interested in

the case where V = W , for then the fact that R is a solution to the Yang-Baxter

equation gives us representations of Bn as follows. We denote ŘWW by ŘW . Define

Ri = 1i−1⊗ŘW ⊗1n−i−1 ∈ EndF(W⊗n) for i = 1, . . . , n−1 where 1j is the identity

on W⊗j and ŘW acts on the ith and (i + 1)st components. Then the Ri satisfy

RiRi+1Ri = Ri+1RiRi+1 and hence σi → Ri defines a representation of the braid

group.

From the following result one computes the eigenvalues of ŘVλVµ on irreducible

submodules (see [D]):

Proposition 2.7 (Drinfeld). Let Vλ and Vµ be Weyl modules of U . Define for

any γ ∈ P+ the number

cγ = 〈γ + 2ρ, γ〉 ∈ 1

2
Z.

Then the restriction of ŘVλVµ to an irreducible submodule is given by:

ŘVλVµ |Vν⊂Vλ⊗Vµ= qcν−cλ−cµ1Vν .

Now fix W ∈ F and n. The above action of Bn induces an action on EndF(W⊗n)

via σi · f = Rif . It can be shown that these are unitary representations precisely

when EndF(W⊗n) is a Hilbert space with respect to the Hermitian form (f, g) =

Trq(f
∗g) (see [W2]). This, of course, depends on the particular choice of the

parameter q–the Hilbert space axiom that often fails is the positivity of ( , ).



Chapter 3

Categorical Definitions

In this chapter we briefly discuss the categorical structure of F. All of the terms

and definitions used here can be found in great detail in the books by Kassel [K]

and Turaev [Tur].

3.1 Premodular Categories

The most specific structure we can put on the category F is the structure of a

premodular category (to be defined shortly). Many authors (e.g. [Tur]) prove that

when q is a 2lth root of unity with l even, Andersen’s quotient category is modular.

The only place the parity of l is used is in proving the S-matrix (see Section 3.2)

is invertible. In order to give a complete definition of a premodular category we

would need to define a number of axioms. We will describe a few important ones

and leave the interested reader to find a full treatment in the references mentioned

above.

Definition 3.1. A premodular category is a semisimple ribbon Ab-category that

has finitely many isomorphism classes of simple objects.

Semisimplicity means that the tensor product of any two objects in the category

can be decomposed into a sum of simple constituent objects. A ribbon Ab-category

18
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O has duality, a braiding and a twist defined for all X,Y, Z ∈ Ob(O):

1. Duality: There is a module X∗ for each object X and maps

bX : 11 → X ⊗X∗, dX : X∗ ⊗X → 11

satisfying

(1X ⊗ dX)(bX ⊗ 1X) = 1X (3.1)

(dX ⊗ 1X∗)(1X∗ ⊗ bX) = 1X∗ . (3.2)

The morphisms bX and dX are often called rigidity morphisms.

2. Braiding: Natural isomorphisms

cX,Y : X ⊗ Y → Y ⊗X

satisfying

cX,Y⊗Z = (1Y ⊗ cX,Z)(cX,Y ⊗ 1Z) (3.3)

cX⊗Y,Z = (cX,Z ⊗ 1Y )(1X ⊗ cY,Z) (3.4)

3. Twist: Natural isomorphisms

θX : X → X

such that

θX⊗Y = cY,XcX,Y (θX ⊗ θY ) (3.5)

θX∗ = (θX)∗ (3.6)

Remark 3.2. The braiding isomorphisms give rise to representations of the braid

groups Bn on the tensor powers of objects in O as we indicated in for the quantum

group case in Section 2.5. In fact, there are several braiding structures on a given

braided category generated by an object X–for then all braiding morphisms are

determined by cX,X , which can be replaced by −cX,X , c−1
X,X or −c−1

X,X to get other

braidings.
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Remark 3.3. Aside from the braiding, the importance of the ribbon structure (for

our purposes) is that it gives us a purely categorical way to define the trace of any

endomorphism. It is defined as follows for an endomorphism f ∈ EndO(X):

trO(f) = dXcX,X∗((θXf)⊗ 1X∗)bX : 11 → 11.

It can be shown (see e.g. [OW] Proposition 1.4) that any premodular category

satisfies the Markov property, that is, if a ∈ EndO(X⊗n) and m ∈ EndO(X⊗2) then

trO((a⊗ 1X) ◦ (1
⊗(n−1)
X ⊗m)) = trO(a)trO(m).

Remark 3.4. The categorical trace trF is the same as the trace on F induced from

Trq of Section 2.4. The braiding in F is precisely the U -module isomorphisms ŘV W

described in Section 2.5. The twist in F is given by multiplying by the quantum

Casimir element Θ defined in [Lu]. The action of Θ on a simple Weyl module Vλ

is by q〈λ+2ρ,λ〉1Vλ
.

3.2 The S-Matrix

Let X1, . . . , Xt be representatives of the finitely many isomorphism classes of

simple objects in a premodular category O. The S-matrix is defined as:

(Si,j) = trO(cXi,Xj
◦ cXj ,Xi

).

A premodular category is said to be modular if S is invertible. The invertibility

of the S-matrix provides a representation of the modular group, SL(2,Z) on the

t-dimensional vector space with a basis labelled by the simple objects in O. It is

shown in e.g. [TW1] that the entries of the S-matrix for the category F is:

Sλµ =
∑
w∈W

ε(w)q2〈w(λ+ρ),µ+ρ〉 (3.7)

where λ and µ ∈ Cl. The form 〈 , 〉 is invariant under the action of W , so the

S-matrix is symmetric. We shall see later that the normalized columns (S̃λµ)λ =

(Sλµ/S0µ)λ of the S-matrix are q-characters. In fact, the quantity dimq(Vλ) defined

in Section 2.4 is equal to S̃λ0 for all λ ∈ Cl, that is, for Weyl modules.
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3.3 The Grothendieck Ring

The Grothendieck semiring associated to a semisimple ribbon category O is

just the underlying ring of equivalence classes of objects Ob(O) where addition is

the direct sum and multiplication is defined by the decomposition (fusion) rules of

the tensor product. We denote the ring by Gr(O). For any premodular category

O the adjoint action of the ring Gr(O) on itself gives us the incidence matrices.

We now restrict our attention to the category F, where the Grothendieck semiring

does not depend on the specific choice of a primitive 2lth root of unity.

Definition 3.5. Fix λ ∈ Cl and let Vλ⊗ Vµ =
⊕

ν∈Cl
N ν

λµVν be the decomposition

into simple objects in F. Then the incidence matrix corresponding to λ is

Mλ = (Nν
λµ)ν,µ∈Cl

We observed that the fusion coefficients are symmetric in all three variables in

Section 2.4, so the matrices Mλ are each symmetric. We also observe that

HomF(Vλ, (Vµi
⊗ Vµj

)⊗ Vµk
) ∼= HomF(Vλ, (Vµj

⊗ Vµi
)⊗ Vµk

)

by the associativity and commutivity of the tensor product, so (Mµi
Mµj

)λµk
=

(Mµj
Mµi

)λµk
and the Mµi

commute. Thus the set of incidence matrices M = {Mλ :

λ ∈ Cl} is a commutative set of diagonalizable matrices, and hence simultaneously

diagonalizable.

3.4 q-Characters

Unfortunately, empirical data indicates that the categorical q-dimension dimq

fails to be strictly positive on Cl for any choice of an lth root of unity q2. More

specifically, we used Mathematica to compute the values of dimq for all lth roots

of unity for several l and up to rank 3, and found that some object always had

a negative dimq value. So we need to generalize the notion of a q-dimension to

have any hope of positivity. To do this we will have to divorce the Grothendieck
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semiring from the category itself, since the q-dimension is determined by a choice

of q, the braiding, the duality and the twist. At the very minimum an appropriate

generalization of the q-dimension must respect the tensor product in F, that is, it

must be a character of the fusion ring of F.

Definition 3.6. A character for the fusion ring Gr(F) is any function f : Cl → C
that satisfies

f(λ)f(µ) =
∑

ν

N ν
λµf(ν) (3.8)

where the N ν
λµ are the fusion coefficients from Section 2.4.

Our main source of characters are the q-characters of Gr(T) denoted χλ for any

λ ∈ P+ and ν ∈ Q defined as follows (recall the defintion of Hν from Subsection

2.1.1):

χλ(Hν) =
1

δB(Hν)

∑
w∈W

ε(w)q〈w(λ+ρ),ν〉

where

δB(Hν) =
∑
w∈W

ε(w)q〈w(ρ),ν〉

is the Weyl denominator. Recall that [n](q − q−1) = qn − q−n. An important

computation due to Weyl [Wy] gives us the product form δB(Hν) =
∏

α∈Φ+
[1
2
〈α, ν〉]

(see [GWa] Chapter 7 for a more modern treatment). The 1
2

appears here because

we have normalized the form 〈 , 〉 to be twice the form used in the classical theory.

But we needn’t concern ourselves; 1
2
〈α, ν〉 is a integer since both α and ν have

integer entries.

Now let q be a fixed 2lth root of unity, l odd. Notice that χλ(H2(µ+ρ)) = S̃λµ

so the normalized columns of the S-matrix are q-characters. We will also need the

following more general q-characters:

Definition 3.7. Let µ ∈ P+ \ Zk so that µ + ρ ∈ P+ ∩Q (so p(µ + ρ) = 1). Then

for all λ ∈ P+ we define

dimµ
q (Vλ) = χλ(Hµ+ρ).
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Notice that setting µ = 2κ+ρ in the above formula gives us dim2κ+ρ
q (Vλ) = S̃λκ

for any κ ∈ Cl so that {dimµ
q : µ ∈ P+} includes the normalized columns of the

S-matrix.

The importance of the q-characters is that for a fixed Hν and q generic (that

is, over the category T) they satisfy the Property 2.1 and 2.2 mentioned in Section

2.4, and hence are characters of Gr(T). In this setting these properties become:

1. χ0(Hν) = 1

2. χλ(Hν)χµ(Hν) =
∑

i m
µi

λµχµi
(Hν) where Vλ ⊗ Vµ =

⊕
i m

µi

λµVµi

as Uqso2k+1-modules.

The first property is easily verified from the definitions, whereas the second is

fundamental in the classical character theory.

Lemma 3.8. For the specialization of a character χκ(Hν) of Gr(T) to a 2l root of

unity to be a character of Gr(F) (i.e. satisfying equation 3.8) it is sufficient that:

3. χκ(Hν) = ε(w)χw·κ(Hν) for all κ ∈ Cl, all w ∈ Wl such that w · κ ∈ P+ and

q a 2lth root of unity, l odd.

Proof. Setting Wκ = {w ∈ Wl : w · κ ∈ P+} for κ ∈ Cl, Property 2 above

becomes:

χλ(Hν)χµ(Hν) =
∑

i

mµi

λµχµi
(Hν) =

∑

κ∈Cl

( ∑
w∈Wκ

ε(w)mw·κ
λµ

)
χκ(Hν) =

∑

κ∈Cl

Nκ
λµχκ(Hν)

since to every µi ∈ P+ there is a unique κ ∈ D0 so that w ·κ = µi for some w ∈ Wl

and Nκ
λµ = 0 if κ ∈ D0 \ Cl (see Section 2.4). ¤

To prove Property 3 in the above lemma we need only verify it for simple

reflections si, tl since they generate Wl, and for the numerator of χκ(Hν) as the

denominator δB(Hν) does not depend on κ. So the veracity of Property 3 will

follow from the following lemma:
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Lemma 3.9.
∑

w∈W ε(w)q〈w(r·κ+ρ),ν〉 = ε(r)
∑

w∈W ε(w)q〈w(κ+ρ),ν〉 for r a simple

reflection and ν ∈ Q.

Proof. Define w′ ∈ W by w′(λ) = λ − 〈λ, ε1〉ε1 and observe that ε(w′) = −1

as w′ just changes the sign of the first coordinate of λ. We compute:

〈w(tl · κ + ρ), ν〉 = 〈tl(κ + ρ)− ρ + ρ, w−1(ν)〉 =

〈(κ + ρ)− 〈κ + ρ, ε1〉ε1 + lε1, w
−1(ν)〉 = 〈ww′(κ + ρ), ν〉+ l〈ε1, ν〉

Since l〈ε1, ν〉 is an even multiple of l and ε(tl) = −1, we have:

∑
w∈W

ε(w)q〈w(tl·κ+ρ),ν〉 = ε(tl)
∑
w∈W

ε(w)q〈w(κ+ρ),ν〉

after reindexing the sum. The computation for si is slightly less complicated, and

just follows from the fact that χκ(Hν) is an antisymmetrization with respect to

the Weyl group of the characters of the finite abelian group lP/Q. It can also be

computed directly as for tl. Thus we have proved the lemma. ¤
Notice that this lemma implies that χκ(Hν) vanishes on Hl, and hence on the

tensor ideal I. Thus the q-characters χκ(Hν) are indeed characters of the fusion

ring Gr(F).

Next we prove the following crucial:

Lemma 3.10. dimΛk
q (Vλ) is positive for all λ ∈ Cl for q = eπi/l.

Proof. First we consider the numerator

∑
w∈W

ε(w)q〈w(λ+ρ),Λk+ρ〉

of dimΛk
q (Vλ). Observe that the positive coroots α̌ ∈ Φ̌+ defined in Section 2.1 are 1

2

the positive roots ΦC
+ of type C (corresponding to sp2k). In the classical theory we

would get exactly the positive roots of type C, but we are using twice the classical

form. Furthermore Λk + ρ = ρ′ is one-half the sum of the positive roots of type

C and is thus the sum of the positive coroots as we have defined them. Moreover,
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the Weyl group W is the same for these two algebras. Let ( , ) be the usual inner

product on euclidian space, so that 2(a, b) = 〈a, b〉. We have that

∑
w∈W

ε(w)q〈w(λ+ρ),Λk+ρ〉 =
∑
w∈W

ε(w)q〈λ+ρ,w(ρ′)〉 =
∑
w∈W

ε(w)q(2(λ+ρ),w(ρ′))

=
∏

β∈ΦC
+

[(λ + ρ, β)] =
∏

α̌∈Φ̌+

[2(λ + ρ, α̌)] =
∏

α̌∈Φ̌+

[〈λ + ρ, α̌〉]

by the observations above and the classical Weyl denominator factorization for type

C. The same computation for λ = 0 shows that the denominator of dimΛk
q (Vλ)

also factors nicely so that when we evaluate at q = eπi/l we get:

dimΛk
q (Vλ) =

∏

α̌∈Φ̌+

[〈λ + ρ, α̌〉]
[〈ρ, α̌〉] =

∏

α̌∈Φ̌+

e〈λ+ρ,α̌〉 − e−〈λ+ρ,α̌〉

e〈ρ,α̌〉 − e−〈ρ,α̌〉

=
∏

α̌∈Φ̌+

sin(〈λ + ρ, α̌〉πi/l)

sin(〈ρ, α̌〉πi/l)
.

By the same analysis in Section 2.4 we see that when λ ∈ Cl, 〈λ + ρ, α̌〉 < l for all

α̌ ∈ Φ̌+ so that each factor in the above product is positive. ¤
We end this section with an important uniqueness theorem which relies on the

classical theorem of Perron and Frobenius found in [Ga]. Recall that a positive

matrix is a matrix whose entries are all strictly positive.

Proposition 3.11 (Perron-Frobenius). A positive matrix A always has a pos-

itive real eigenvalue of multiplicity one whose modulus exceeds the moduli of all

other eigenvalues. Furthermore the corresponding eigenvector may be chosen to

have only positive real entries and is the unique eigenvector with that property.

We now proceed to prove:

Theorem 3.12. Evaluating dimΛk
q (Vλ) at eπi/l gives the only q-character of Gr(F)

that is positive for all λ ∈ Cl.

Proof. The key observation here is that for any function f : Cl → C satisfying

equation 3.8 the vector f = (f(λ))λ∈Cl
must be a simultaneous eigenvector of the
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set M. In fact, using the definition of Mλ one computes that Mλ(f) = f(λ)f .

So if we can show that MΛk
∈ M has only one positive eigenvector we will have

proved the lemma. Observe that for some odd integer s, the matrix M s
Λk

+ M s+1
Λk

has all positive entries. That is, every integral weight Weyl module appears in

V ⊗s
Λk
⊗Vλ for λ a half-integral weight, and every half-integral weight module appears

in V ⊗s+1
Λk

⊗ Vµ for µ an integral weight. (See the remark after Example 2.5). So

one may apply the Perron-Frobenius Theorem to the matrix M s
Λk

+ M s+1
Λk

to see

that it has a unique positive eigenvector. But MΛk
is a (symmetric) diagonalizable

matrix, so it has the same eigenvectors as M s
Λk

+ M s+1
Λk

. Since dimΛk
q (Vλ) at eπi/l

was shown to be positive in Lemma 3.10, we are done. ¤

3.5 The Involution

Next we define an involution φ of Cl that will be central to the analysis of

the q-characters of F. Let γ ∈ Cl be such that |γ| is maximal, explicitly, γ =

( l−2k
2

, . . . , l−2k
2

). Further denote by w1 the element of the Weyl group W such that

w1(µ1, . . . , µk) = (µk, . . . , µ1). Define φ(λ) := γ − w1(λ). It is clear that φ is a

bijective map from Cl to itself and that φ2(λ) = λ, and that φ 6∈ Wl as no λ ∈ P+

is fixed by φ. The following lemma describes the key property of φ.

Lemma 3.13. For any q a primitive 2lth root of unity the involution φ preserves

dimµ
q (for µ ∈ P+ \ Zk) up to a sign, that is

dimµ
q (Vλ) = ± dimµ

q (Vφ(λ)) (3.9)

In particular (by setting µ = ρ) this holds for the categorical q-dimension dimq of

F.

Proof. Fix µ ∈ P+ \ Zk and a choice of a primitive 2lth root of unity q. First
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consider
∑

w∈W ε(w)q〈λ+ρ,w(µ+ρ)〉 the numerator of dimµ
q (Vλ). We compute

〈φ(λ) + ρ, w(µ + ρ)〉 = 〈γ − w1(λ) + ρ, w(µ + ρ)〉
= 〈w1(γ − λ + ρ + w1(ρ)− ρ), w(µ + ρ)〉
= 〈γ + ρ + w1(ρ), w1w(µ + ρ)〉+ 〈λ + ρ,−w1w(µ + ρ)〉
= l ·

∑
i

(w1w(µ + ρ))i + 〈λ + ρ,−w1w(µ + ρ)〉.

Now t(µ) :=
∑

i(w1w(µ+ρ))i =
∑

i(w(µ+ρ))i is an integer whose parity is the

same as that of
∑

i(µ + ρ)i and depends only on µ (and the rank k), and ql = −1

so ql·t(µ) = ±1 and we have

∑
w∈W

ε(w)q〈φ(λ)+ρ,w(µ+ρ)〉 =
∑
w∈W

±ε(w)q〈λ+ρ,−w1w(µ+ρ)〉

= ±
∑

w′∈W

ε(w′)q〈λ+ρ,w′(µ+ρ)〉

where w′ = −w1w. Since the denominator of dimµ
q (Vλ) is independent of λ the

lemma is true for µ ∈ P+ ∩ 1
2
Zk \ Zk. To see that it is true for any normalized

column of the S-matrix, just replace µ by 2κ + ρ with κ ∈ Cl. ¤
Let us pause for a moment to nail down exactly which sign dim2κ+ρ

q (Vφ(λ)) has

in terms of dim2κ+ρ
q (Vλ). We will use this later in analyzing the S-matrix. Here

there are two factors governing signs of the q-characters: ε(−w1) and the parity of
∑

i w(2κ + ρ)i. One has that:

ε(−w1) =





(−1)k/2 for k even

(−1)(k−1)/2 for k odd

Furthermore (recalling the definition of p(κ) from Section 2.2 we compute:

ql
P

i w(2κ+ρ)i =





(−1)k if p(κ) = 1

1 if p(κ) = −1

so we have the following result:
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Scholium 3.14.

dim2κ+ρ
q (Vφ(λ)) =





dim2κ+ρ
q (Vλ) k ≡ 0 mod 4

p(κ) dim2κ+ρ
q (Vλ) k ≡ 1 mod 4

− dim2κ+ρ
q (Vλ) k ≡ 2 mod 4

−p(κ) dim2κ+ρ
q (Vλ) k ≡ 3 mod 4

From this we can easily see that the S-matrix for F is never invertible–the

rows corresponding to λ and φ(λ) always differ by ±1. This result will be used in

Section 6.2.

The following important lemma gives the decomposition rule for tensoring with

the object in F labelled by γ.

Lemma 3.15. Vγ ⊗ Vµ = Vφ(µ) for all µ ∈ Cl.

Proof. By Lemmas 3.13 and 3.10 we know that dimΛk
q (Vγ) = dimΛk

q (V0) = 1

since φ(0) = γ. So

dimΛk
q (Vγ ⊗ Vµ) = dimΛk

q (Vµ) = dimΛk
q (Vφ(µ)).

Recall from 2.4 that the simple U -module decomposition of Vγ ⊗ Vµ into simple

objects is
⊕

ν N ν
γµVν with

N ν
γµ =

∑
Wν

ε(w)mw·ν
γµ

where Wν = {w ∈ Wl : w · ν ∈ P+} and mw·ν
γµ is the multiplicity of Vw·ν in the

decomposition of Vγ ⊗ Vµ as Uso2k+1-modules. Observe that the weight φ(µ) =

γ − w1(µ) is in Cl and m
φ(µ)
γµ = 1 (see Section 2.3). The only way that Vφ(µ)

might not appear in the F decomposition is if φ(µ) were equal to a reflection

(under the dot action of Wl) of γ + κ for some κ ∈ P (µ) (notice this also covers

weights in other Weyl chambers). To see that this is impossible, we use a geometric

argument, although it is really nothing more than an adaptation of the classical

outer multiplicity formula. First note that γ is a positive distance from all walls of

reflection under the dot action of Wl. Next observe that the straight line segment
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from γ to γ + κ has Euclidian length |κ| ≤ |µ|. So the reflected piecewise linear

path from γ to w · (γ + κ) will not be straight, and will have total length |κ| as

well. Thus the straight line segment from γ to w · (γ +κ) must have length strictly

less than |µ|, whereas the straight line segment from γ to φ(µ) has length |µ|. So

Vφ(µ) is a U -submodule of Vγ ⊗ Vµ. But since dimΛk
q is positive on Cl and

dimΛk
q (Vφ(µ)) = dimΛk

q (Vγ ⊗ Vµ) =
∑

ν

N ν
γµ dimΛk

q (Vν)

it is clear that Vφ(µ) is the only submodule that appears in the decomposition. ¤



Chapter 4

Categories from BMW -Algebras

In this section we will discuss the BMW -algebras Cf (r, q) and the semi-simple

quotients we are interested in. These algebras are quotients of the group algebra

of Artin’s braid group Bf and were studied extensively in [W1] and [TW2], and

more recently in [TuW2].

Definition 4.1. Let r, q ∈ C and f ∈ N, then Cf (r, q) is the C-algebra with

invertible generators g1, g2, . . . , gf−1 and relations:

B1 gigi+1gi = gi+1gigi+1,

B2 gigj = gjgi if |i− j| ≥ 2,

R1 eigi = r−1ei,

R2 eig
±1
i−1ei = r±1ei,

where ei is defined by

E1 (q − q−1)(1− ei) = gi − g−1
i

Notice that (E1) and (R1) imply

(gi − r−1)(gi − q)(gi + q−1) = 0

30
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for all i. So the image of gi on any finite dimensional representation has minimal

polynomial with distinct roots provided q2 6= 1 and r 6∈ {q,−q−1}. Notice further

that the image of ei is a multiple of the projection onto the gi-eigenspace corre-

sponding to eigenvalue r−1. There exists a trace tr on the family of algebras Cf (r, q)

uniquely determined by the values on the generators, and inductively defined by the

Markov property (see [W1]). Explicitly we have tr(1) = 1, tr(gi) = r( q−q−1

r−r−1+q−q−1 ),

and tr(axb) = tr(ab)tr(x) for a, b ∈ Cf−1(r, q) and x ∈ {gf−1, ef−1, 1}. The exis-

tence of such a trace comes from the well-known Kauffmann link invariant. Ob-

serve that Cf (r, q) has a number of automorphisms, for example replacing the

generators by their negatives or inverses does not change the structure. These

automorphisms induce isomorphisms between BMW -algebras with different pa-

rameters. For example Cf (r, q) ∼= Cf (−r,−q). This freedom has been completely

analyzed in [TuW2], and will be mentioned later.

4.1 The Relevant Specialization

Now assume q is a primitive 2lth root of unity, l odd and r = −q2k. Most of

what follows is true of any choice of a root of unity q and r a power of q, but we

restrict our attention to the present case for brevity’s sake. Let Af be the annihi-

lator ideal of tr on Cf (−q2k, q). Then the algebras Ef (k, l) := Cf (−q2k, q)/Af are

semisimple and finite dimensional and are thus isomorphic with a direct sum of full

matrix algebras. Henceforth we will denote these algebras simply by Ef , and for

the images of the g±1
i in this quotient we will denote by the same symbol for ease

of notation. By semisimplicity we can decompose Ef via minimal idempotents.

Definition 4.2. An idempotent in an algebra is an element x so that x2 = x.

Such an idempotent is called minimal if it is nonzero and if whenever x = w + z

with w and z idempotents then w or z is zero. We call two idempotents x and y

orthogonal if xy = yx = 0.

Notice that Ef ⊂ Ef+s, s ≥ 0 since Cf (r, q) ⊂ Cf+s(r, q) and the tr function
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and its annihilator are defined inductively to have the Markov property and are

thus compatible with the embeddings. We define E∞ to be the inductive limit

of the Ef as f → ∞. Two idempotents x ∈ Ef1 and y ∈ Ef2 are equivalent in

E∞ if there are elements u, v in some Ef so that x = uv and y = vu. Another

definition is that two idempotents x, y are equivalent precisely if xEf
∼= yEf as

right Ef -modules.

Define a category V whose objects are idempotents in E∞, and define the mor-

phisms spaces as in [TW2] Section 7.2. We will not include this as it is somewhat

involved and we are mostly only concerned with the Grothendieck semiring. The

tensor product on V comes from the embeddings of En ⊂ En+m. To understand

this product on the semiring level we use the method of Goodman and Wenzl in

[GoW], whereas at the categorical level the process is essentially due to Turaev.

Definition 4.3. A representation (π, A) of the inductive limit B∞ of Bn into the

invertible elements of an algebra A is called approximately finite if An := π(CBn)

is semisimple and finite dimensional for each n.

For any n, m there is a group homomorphism shiftm : Bn → Bm+n defined on

generators by σi → σi+m. In fact there is an element σm,n ∈ Bm+n (see [GoW]) so

that

1. σ−1
m,nσiσm,n = σi+m for 1 ≤ i ≤ n− 1

2. σ−1
m,nσn+jσm,n = σj for 1 ≤ j ≤ m− 1

If (π, A) is an approximately finite representation of B∞, π induces a homomor-

phism shiftm : An → Am+n. If we denote by [x] the equivalence class of the idempo-

tent x ∈ Am and [y] for y ∈ An we can define a product by: [x][y] = [x · shiftm(y)].

Here we identify x ∈ Am ⊂ Am+n with its image under the inclusion. (This comes

from the inclusion Bm ⊂ Bm+n and the fact that the trace is inductively defined.)

Proposition 4.4 (Goodman-Wenzl). The product ⊗ above is:

well-defined, associative and commutative and respects orthogonality: if x = x′ +
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x′′ with x′ and x′′ orthogonal idempotents then x′shiftm(y) and x′′shiftm(y) are

orthogonal idempotents.

We may now apply this to E∞ to describe the tensor product on V (again,

just at the level of the Grothendieck semiring). It can be shown (by relating the

BMW -algebras to Hecke algebras, see [W1]) that the equivalence classes of mini-

mal idempotents in E∞ are labelled by Ferrers diagrams. In fact, the equivalence

classes of minimal idempotents in E∞ are finite in number–the labelling set is given

below. So we have the following for minimal idempotents pλ, pµ ∈ E∞:

[pλ][pµ] =
∑

ν

cν
λµ[pν ] (4.1)

where cν
λµ is the number of minimal idempotents equivalent to pν that appear in

the decomposition of pλshiftm(pµ) into a sum of minimal idempotents. Next we

give the exact definition of the labelling set for (classes of) inequivalent minimal

idempotents.

Definition 4.5. Let λs be the number of boxes in the sth row of the Ferrers

diagram λ and λ′s be the number of boxes in the sth column. The simple objects

of V are labelled by the following Ferrers diagrams:

Γ(k, l) = {λ : λ′1 + λ′2 ≤ 2k + 1, λ1 ≤ (l − 2k − 1)/2}

We will call the elements of Γ(k, l) weights, and we now denote the simple

objects of V by Xλ. By semisimplicity of Ef , any object in V can be expressed

uniquely as a sum of Xλ. One computes |Γ(k, l)| = 2
( l−1

2
k

)
so |Γ(k, l)| = |Cl|.

The Markov trace on E∞ gives rise to a q-dimension on the simple objects V

by evaluating the trace on minimal idempotents. It is related to Kauffmann’s link

invariant [Kf] and can be computed by evaluating characters of the group O(2k+1).

This q-dimension Qλ(q) is defined for any Ferrers diagram as follows (see [W1]).

By the (i, j)th box in a Ferrers diagram we mean the box in the ith row and jth

column. For each box in a fixed diagram λ we define the two quantities d(i, j) and
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h(i, j) by:

d(i, j) =





λi + λj − i− j + 1 if i ≤ j

−λ′i − λ′j + i + j − 1 if i > j

and h(i, j) = λi − i + λj
′ − j + 1 (the hook length). With these functions in hand

we can now define the q-dimension for V.

Definition 4.6. For each λ let

Qλ(q) =
∏

(j,j)∈λ

[−2k − (λj − λ′j)] + [h(j, j)]

[h(j, j)]

∏

(i,j)∈λ,i 6=j

[−2k − d(i, j)]

[h(i, j)]

where [n] is the q-number.

By semisimplicity one can extend this function linearly to any sum of simple ob-

jects, and the character theory of O(2k+1) shows that this is indeed a q-dimension.

The formula for more general BMW -algebras and the complete derivation can be

found in [W1]. However, note that in that paper the equations are slightly differ-

ent due to the fact that the transposed labelling set is used. We see that we have

the right Qλ(q) function by computing that if λ′1 + λ′2 = 2k + 2 (respectively if

λ1 = (l−2k+1)/2) that the factor corresponding to the (2, 1) box (respectively the

(1, 1) box) is zero. This point should be emphasized: the BMW -algebras Cn(r, q)

and Cn(r,−q−1) are isomorphic, with the isomorphism being achieved by trans-

posing the labels of the minimal idempotents (see [W1]). Notice that if ql = −1

with l odd then (−q−1)l = 1 and so we may assume with out loss of generality

that q is a primitive 2lth root of unity to cover all cases where q2 is a primitive lth

root of unity. We alluded to this in the beginning of Section 2.4, and by the end

of chapter 5 it will be clear that our tacit assumptions about q do not exclude any

cases we have claimed to have covered.

The semiring of V can also be described as follows. Let Rep(O(2k + 1)) be the

tensor category of representations of the Lie group O(2k + 1). Let J be the ideal

in Gr(Rep(O(2k + 1)) generated by the simple objects Wλ with Qλ(q) = 0. The

analysis of E∞ in [W1] shows that Gr(V) ∼= Gr(Rep(O(2k + 1))/J. An explicit
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Littlewood-Richardson rule has not been derived for the category V, but we can

decompose a certain class of tensor products as follows:

Let λ, µ ∈ Γ(k, l), and Wλ,Wµ be the corresponding irreducible O(2k+1)-modules.

If for every Wν ⊂ Wλ⊗Wµ either ν ∈ Γ(k, l) or Qν(q) = 0 then Xλ⊗Xµ decomposes

as the direct sum of all Xν with ν ∈ Γ(k, l) with the same multiplicities as in the

O(2k + 1)-module decomposition.

Example 4.7. The object X = X[1] generates the category in the sense that every

simple object in V appears as a direct summand of X⊗n for some n. It is easy

to describe the explicit decomposition algorithm for X ⊗ Xλ with λ ∈ Γ(k, l).

The corresponding representation W[1] of O(2k + 1) is the vector representation

for which the tensor product rules are quite simple. As O(2k + 1)-modules the

decomposition is W[1] ⊗Wλ =
⊕

ν Wν where ν is a Ferrers diagram gotten from λ

by adding or subtracting one box. Thus the decomposition of X ⊗Xλ is the same

after discarding all ν 6∈ Γ(k, l). For example,

X⊗2 = 11⊕X[2] ⊕X[12]

where 11 is the identity object corresponding to 1 ∈ E0 = C.

The following key proposition is in [TuW2] (Theorem 8.5), and shows that

the morphisms spaces in V are precisely the algebras from which the category is

derived.

Proposition 4.8. For each n we have Ξ : En
∼= EndV(X

⊗n) as C-algebras. More-

over, Ξ respects embeddings:

if x ∈ En and y ∈ Em are idempotents, then the idempotents

(Ξ(x)⊗ 1⊗m
X ) ◦ (1⊗n

X ⊗ Ξ(y))

and

Ξ(xshiftn(y))

are equivalent in EndV(X
⊗(m+n)).

This proposition shows that the centralizer algebras EndV(X
⊗n) are generated

by the images of the gi.
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4.1.1 V Summarized

The following is a compendium of the key properties of the category V. These

can be found in the references at the beginning of this chapter.

1. V is a premodular category. The braiding comes from the images of the

elements σm,n in Em+n. In particular, in EndV(X
⊗2) the braiding matrix is

CX,X = Ξ(g1). Other braidings are given by replacing CX,X by its inverse or

negative (or both).

2. The eigenvalues of CX,X on X⊗2 restricted to 11, X[2] and X[12] are −q−2k, q

and −q−1 respectively.

3. Q[1](q) = q−2k−q2k

q−q−1 + 1 with the first braiding above. Other braidings only

affect the sign of Q[1](q).

4. The isomorphism Ξ respects embeddings.

5. Gr(V) ∼= Gr(Rep(O(2k + 1)))/J.



Chapter 5

The Equivalence

This chapter contains the main result: F and V are equivalent as tensor cate-

gories. It has recently been proved (see [TuW2] Theorem 9.5) that the category V

is completely determined by:

1. The Grothendieck semiring Gr(V),

2. The eigenvalues of the braiding morphism CX,X .

This theorem implies that any braided tensor category O with Gr(O) ∼= Gr(V)

with the same eigenvalues for the braiding matrices is equivalent to V. So we must

show that there exists a q so that F has the same Grothendieck semiring as V and

that there is an object V ∈ F so that the eigenvalues of one of ±Ř±1
V V match those

of CX,X . To achieve this we must first recall some vital facts–proofs of which may

be found in previous chapters or in the references. The equivalence will be staged

in several somewhat technical steps. The proof is outlined as follows:

I For any n the centralizer algebras EndV(X
⊗n) and EndF(V ⊗n) are isomor-

phic.

II There exists a braiding on F such that the representation of the braid group

on V ⊗n factors through En for all n, and the traces on each are compati-

37
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Table 5.1: Tensor Categories

Category Labelling Set Objects

Rep(O(2k + 1)) Diagrams λ, λ′1 + λ′2 ≤ 2k + 1 Wλ

V Γ(k, l) Xλ

Rep(Uqso2k+1), |q| 6= 1 P+ Vλ

F Cl Vλ

ble. Using part I we show that this map is an isomorphism that respects

embeddings.

III Combining part II with the isomorphism Ξ in the previous chapter, we get a

family of isomorphisms between EndV(X
⊗n) and EndF(V ⊗n) that preserves

the braiding morphisms. This shows that F and V are equivalent as abstract

tensor categories. We then identify precisely the correspondence for simple

objects in F and V.

5.1 Related Tensor Categories

Several tensor categories will be bandied about in what follows. Recall first the

following sets:

1. Γ(k, l) = {λ : λ′1 + λ′2 ≤ 2k + 1, λ1 ≤ (l − 2k − 1)/2}. Here λ is a Ferrer’s

diagram, and λ′i is the number of boxes in the ith column.

2. P+ = {λ ∈ Zk ∪ (Zk + 1
2
(1, 1, . . . , 1)) : λ1 ≥ λ2 ≥ . . . λk ≥ 0}

3. Cl = {λ ∈ P+ : l−2k
2
≥ λ1}.

Table 5.1 will serve as a lexicon of notation. The first column is the category, the

second the labelling set for simple objects, and the third the notation used for the

simple object labelled by λ.

Next we note a few homomorphisms that exist between the Grothendieck semir-

ings of these tensor categories.
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1. As we mentioned in the previous chapter, the ring Gr(V) is a quotient of

Gr(Rep(O(2k + 1))). Provided µ ∈ Γ(k, l) we have:

dim HomV(Xµ, X[1] ⊗Xλ) = dim HomO(2k+1)(Wµ,W[1] ⊗Wλ).

2. From the classical theory we know that restricting O(2k + 1)-modules to

SO(2k + 1) and then taking the differential of the representation gives a

homomorphism from Gr(Rep(O(2k + 1))) to Gr(Rep(so2k+1)). Recall from

Section 2.3 that the dominant weights of O(2k + 1) are integral (Young dia-

grams) whereas so2k+1 has both integral and half-integral dominant weights,

so this homomorphism is two-to-one. From this we deduce:

dim HomV(Wµ,W[1] ⊗Wλ) = dim Homso2k+1
(Vµ, VΛ1 ⊗ Vλ)

where µ and λ are the integral weights in P+ defined in Subsection 2.3.2.

3. For generic q, Gr(Rep(so2k+1)) and Gr(Rep(Uqso2k+1)) are isomorphic. For

this reason we denote the simple objects from both categories by Vλ.

4. The category F is obtained from Rep(Uqso2k+1) as a quotient. The explicit

Littlewood-Richardson rule was described in Proposition 2.4. Heedless of

any potential confusion, we denote the simple objects in F by Vλ as well.

Recall from example 2.6 that for any integral weight λ ∈ Cl:

Vµ ⊂ VΛ1 ⊗ Vλ ⇐⇒ Vµ ⊂ VΛ1 ⊗ Vλ, µ ∈ Cl.

5.2 Step One

We will write Vφ(Λ1) = V . We wish to show that

EndV(X
⊗n) ∼= EndF(V ⊗n)

as C-algebras for all n ≥ 0. Define a bijection Ψ : Γ(k, l) → Cl by

Ψ(λ) =





λ̄, if |λ| is even,

φ(λ̄), if |λ| is odd.
(5.1)
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Observing that the tensor product of any simple object in V (resp. F) with the

generating object X (resp. V ) is multiplicity free, the algebras EndV(X
⊗n) and

EndF(V ⊗n) are isomorphic once we prove:

Lemma 5.1. Let µ, λ ∈ Γ(k, l). Then

dim HomV(Xµ, X ⊗Xλ) = dim HomF(VΨ(µ), V ⊗ VΨ(λ)).

P roof. Using the first homomorphism of Grothendieck semirings above and

the assumption that µ ∈ Γ(k, l), we have

dim HomV(Xµ, X ⊗Xλ) = dim HomO(2k+1)(Wµ,W[1] ⊗Wλ).

Restricting to SO(2k + 1), differentiating and applying the third homomorphism

above we have

dim HomUqso2k+1
(Vµ, VΛ1 ⊗ Vλ) = dim HomO(2k+1)(Wµ,W[1] ⊗Wλ).

Now we split into the two cases from the definition of Ψ:

Case I: |λ| is even (so |µ| is odd)

Since µ ∈ Cl and VΨ(λ) = Vλ we see that

dim HomF(Vµ, VΛ1 ⊗ VΨ(λ)) = dim HomUqso2k+1
(Vµ, VΛ1 ⊗ Vλ) (5.2)

Lemma 3.15 implies that Vγ ⊗ Vµ = Vφ(µ) = VΨ(µ) as objects in F, and similarly

Vγ ⊗ VLa1 = V . So tensoring with Vγ (see example 5.2) we have:

dim HomF(VΨ(µ), V ⊗ VΨ(λ)) = dim HomF(Vµ, VΛ1 ⊗ VΨ(λ)).

Case II: |λ| is odd (so |µ| is even)

In this case VΨ(λ) = Vγ ⊗ Vλ and VΨ(µ) = Vµ so using the fact that Vγ ⊗ Vγ = 11 we

derive similarly that

dim HomF(VΨ(µ), V ⊗ VΨ(λ)) = dim HomF(Vµ, VΛ1 ⊗ VΨ(λ))

in this case. ¤
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This lemma implies that

dim HomV(Xν , X
⊗n) = dim HomF(VΨ(ν), V

⊗n)

by an easy induction argument. Since both categories are semisimple we conclude

that there is a C-algebra isomorphism:

F : EndV(X
⊗n) ∼= EndF(V ⊗n). (5.3)

Hence and further we abbreviate V(2,0,...,0) = VΨ([2]) = V1 and V(1,1,0,...,0) = VΨ([12]) =

V2 for ease of notation.

5.3 Step Two

In this section we show that the algebras Ef and EndF(V ⊗f ) are isomorphic.

Moreover, the isomorphism respects the embeddings

EndF(V ⊗f1)⊗ EndF(V ⊗f2) ⊂ EndF(V ⊗(f1+f2))

given by a ⊗ b → (a ⊗ 1⊗f2) ◦ (1⊗f1 ⊗ b). We have a family of representations

π of CBf on EndF(V ⊗f ) given by σi → Ri as in Section 2.5 corresponding to

the braiding matrix ŘV V , which we will denote by R in this section. Moreover, π

respects embeddings by approximate finiteness, so it only remains to check that the

representation of CBf on V ⊗f factors through Ef and the trace on Ef is compatible

with the categorical trace on F. So we must see that the operators Ri defined in

Section 2.5 satisfy the defining relations and trace restrictions of Cf (−q2k, q) of

chapter 4. In fact, it is sufficient to check the relations and traces for f = 3

since all the relations (except B2, which follows directly from the definitions) only

involve generators whose indices differ by at most 1. The two main computations

are:

(a) There is an action of CB2 on V ⊗2 so that the image of σ1 has eigenvalues

−q−2k, q and −q−1 respectively on the submodules 11, V1 and V2 for some

primitive 2lth root of unity q.
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(b)

± dimq(V ) =
q−2k − q2k

q − q−1
+ 1

We do not fix a specific braiding so this gives us the freedom to rescale R by

multiplying by any 4th root of unity (see [TuW1] Section 3.3) to verify the above.

We begin with a fixed primitive 2lth root of unity q.

From Proposition 2.7, we compute the eigenvalues of R2
1 on 11, V1 and V2 to be

(−1)kq−8k, (−1)kq4 and (−1)kq−4. Using Lemma 3.13 and the definition of dimq

from Section 2.4 we compute

± dimq(V ) = dimq(VΛ1) =
q4k − q−4k

q2 − q−2
+ 1.

By multiplying by an appropriately chosen 4th root of unity, we may eliminate

the factor (−1)k. Next notice that q̃ = −q2 is also a primitive 2lth root of unity,

so if we replace −q2 by q̃ the eigenvalues of R2 become q̃−4k,q̃2 and q̃−2. So there

are eight possible choices for the eigenvalues of the R, corresponding to the sign

choices: ±q̃−2k, ±q̃−1 and ±q̃. Replacing −q2 by q̃ in the q-dimension formula

above gives us:

± dimq(V ) =
q̃−2k − q̃2k

q̃ − q̃−1
+ 1. (5.4)

So we have verified condition (b) above. The following result from [TuW2] (proof

of Lemma 6.3) allows us to compute the q-dimension of the object V up to a sign

from the eigenvalues of R on V ⊗2.

Proposition 5.2. Let O be a ribbon category and X a simple object in O such that

X⊗2 = Y ⊕Z⊕ 11 where 11 is the identity object and Y, Z are simple objects. If the

eigenvalues of the image of the braid generators on X⊗2 are {c1, c2, c3} respectively

then the categorical q-dimension of the object X is:

± dimq(X) =
c2
3 + c1c2 − c3(c1 + c2)

c3(c
−1
1 + c−1

2 )
(5.5)

Applying this to the current situation with the category F and comparing with

equation 5.4 we can eliminate all but two of the eight possible sign choices: q̃−2k,
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q̃ and −q̃−1 and −q̃−2k, q̃ and q̃−1. But multiplying R by −1 changes the former

into the latter, so we have verified condition (a) above. To give an idea of the

computation involved consider the case where c1 = q̃ and c2 = q̃−1. Let a = q̃−2k

and c3 = ±a. From equation 5.4 and the proposition above we get:

±(a + a−1)

q̃ + q̃−1
− 1 = ±a− a−1

q̃ − q̃−1
+ 1

Solving for a with the four possible sign choices gives us

a ∈ {−q̃±3, q̃±1,−q̃±1}

which contradicts a = q̃−2k.

Let t denote the multiple of R resulting from the various changes we made, and

ti the corresponding multiple of Ri. Now we are in a position to show that the

relations B1, B2, R1 and R2 are satisfied, as well as the compatibility of the trace.

Define e = 1− t−t−1

q̃−q̃−1 so that ei is defined as in 4. We will need the following fact

from [TuW2] (Lemma 5.2) which we will state, in the current situation:

Lemma 5.3. Let b ∈ EndF(V ⊗2) and let p be the projection onto 11 ∈ V ⊗2. Then

(1V ⊗ p) ◦ (b⊗ 1V ) ◦ (1V ⊗ p) = tr(b)(1V ⊗ p)

(This result follows from the duality in the category.) We have the following

results which are in some cases obvious and in other cases tedious computations:

1. B1 and B2 are automatically satisfied by the ti as they are not affected by

the changes we made to the Ri.

2. te = −q̃−2ke as e is by its very definition a multiple of the projection onto

the trivial representation 11 ⊂ V ⊗2 on which t acts by −q̃2k.

3. A direct computation using the categorical trace and the known q-dimensions

yields trF(t) = −q̃2k( q̃−q̃−1

q̃−2k−q̃2k+q̃−q̃−1 ) as required. (See Proposition 5.2.)

4. That trF(e) = trF(t)/(−q̃2k) follows from the defintion of e.
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5. Lemma 5.3 shows that e2t
±1
1 e2 = r±1e2, since e is a multiple of the projection

onto 11.

Thus the braid representation π factors through En for all n, and since the traces

on each satisfy the Markov property they are compatible. We denote the resulting

homomorphism by Ω.

Lemma 5.4. The map Ω : Ef → EndF(V ⊗f ), given by Ω(gi) = Ri is bijective for

any f , and respects the embeddings.

Proof. Combining the map Ξ of the previous chapter with the map F of step

one we know that Ef and EndF(V ⊗f ) are equal in dimension. But by compatibility

of the traces and semisimplicty of both algebras, Ω is bijective. Since the braid

representation π respects the embeddings

EndF(V ⊗n)⊗ EndF(V ⊗m) → EndF(V ⊗(n+m))

Ω must also. ¤
Now observe that Ω ◦ Ξ−1(CX,X) = t, and since the images of CX,X and t under

the embeddings into the larger centralizer algebras generate we have:

Theorem 5.5. The isomorphism Ω ◦ Ξ−1 : EndV(X
⊗(f)) → EndF(V ⊗(f)) induces

a tensor equivalence between V and F.

Proof. We have verified that the eigenvalues of the braiding morphisms CX,X

and t are identical. Since both Ω and Ξ respect embeddings, Ω ◦Ξ−1 is compatible

with the tensor product rules, that is Ω◦Ξ−1(pλ)⊗Ω◦Ξ−1(pµ) and Ω◦Ξ−1(pλ⊗pµ)

are equivalent F-morphisms for any two morphisms pµ ∈ EndV(X
⊗n) and pλ ∈

EndV(X
⊗m). ¤

5.4 Step Three

Although the last theorem shows that the tensor product rules for F and V

are the same, it does not describe the explicit correspondence between the simple
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objects in each category. It is given in the following theorem:

Theorem 5.6. Let pλ be a minimal idempotent in EndV(X
⊗n) with image Xλ.

Then Ω ◦ Ξ−1(pλ)V
⊗n ∼= VΨ(λ).

Proof. We only need to show that this is true for the smallest n such that Xλ

appears in X⊗n since Ω ◦ Ξ−1 respects equivalence of idempotents. The proof will

go by induction on n. First observe that for n = 0 both algebras are isomorphic to

C and so the trivial representations in each category do correspond. For n = 1 we

again get 1-dimensional centralizer algebras so Ω ◦ Ξ−1(p[1])V ∼= V = VΨ([1]). Now

let n ≥ 1 and assume that Ω ◦Ξ−1(pλ)V
⊗n ∼= VΨ(λ) for all λ ∈ Γ(k, l) with |λ| = n.

Let µ ∈ Γ(k, l) with |µ| = n + 1. By Lemma 5.1 we have that VΨ(µ) ⊂ V ⊗ VΨ(λ)

if and only if Xµ ⊂ X ⊗ Xλ, in particular if |λ| = n. Let T µ
n be the set of

λ ∈ Γ(k, l) with |λ| = n so that VΨ(µ) ⊂ V ⊗ VΨ(λ) (recall Ψ is a bijection). Define

Sn+1
λ = {ν : |ν| = n + 1, Xν ⊂ Xλ ⊗X}. So by the induction hypothesis,

µ ∈
⋂

λ∈T µ
n

Sn+1
λ .

But any Ferrers diagram of size n + 1 is determined by its subdiagrams of size

n (see [W3] Lemma 2.11(b)), and Γ(k, l) contains all subdiagrams of each of its

members, so

{µ} =
⋂

λ∈T µ
n

Sn+1
λ .

By the definition of T µ
n we then have that Ω ◦ Ξ−1(pµ)V ⊗n ∼= VΨ(µ) and we are

done. ¤



Chapter 6

Consequences

6.1 Failure of Positivity

In this chapter, we only need the categorical q-dimension for the object in V

corresponding to λ = [1]:

Q[1](q) =
[−2k]

[1]
+ 1 =

q−2k − q2k

q − q−1
+ 1

The crucial fact we use here is from [TuW1]: any braided category O with the same

Grothendieck semiring as V has the same q-dimension as V up to a choice of q and

the sign of Q[1](q). So if we can show that ±Qλ(q) is never equal to the unique

positive q-character of Lemma 3.12 above for any choice of q2 an lth root of, then

we will have shown that this abstract category does not support both positivity

and a braiding.

Remark 6.1. It is crucial to observe that we now allow q to be any power of eπi/l

that is relatively prime to l. This is because we are using the fact that replacing q

by −q−1 corresponds to taking the transposed diagrams in Γ(k, l). This does not

effect the Grothendieck semiring, but does change Qλ(q).

By virtue of the equivalence of categories we may define the positive (normal-

ized) q-character for λ ∈ Γ(k, l) by Dimq(λ) = dimΛk
q (Ψ(λ)). The various values

46
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of Qλ(q) come from choosing different values of q2 primitive lth roots of unity

(which of course changes the category as well). If we set fλ(z) = Qλ(e
zπi/l) for

1 ≤ z ≤ l − 1 and gcd(l, z) = 1, then fλ(z) takes on all possible values of Qλ(q).

We may now formulate:

Theorem 6.2. If 2(2k +1) < l then fλ(z) 6= Dimq(λ) for any z with 1 ≤ z ≤ l−1

and gcd(l, z) = 1.

Since both Qλ(q) and Dimq(λ) are normalized so that their values at the trivial

representation are 1, this theorem is a consequence of the following:

Lemma 6.3. Let h(z) = f[1](z). Then if 2(2k + 1) ≤ l and 1 ≤ z ≤ l − 1 with

gcd(l, z) = 1 then |h(z)| < Dimq([1]).

Proof. We start by showing that h(z) < Dimq([1]). We have that h(z) =
− sin(2kzπ/l)

sin(zπ/l))
+ 1 and Dimq([1]) = sin((2k+1)π/l)

sin(π/l)
. First one notes that Dimq([1]) > 1

and so h(z) < Dimq([1]) if z ≤ l/2k. So the lemma is true for z ∈ I1 = [1, l/2k].

Next we make a change of variables z → l − z′ in order to eliminate large z.

We define

g(z′) = h(l − z′) =
sin(2kz′π/l)

sin(z′π/l)
+ 1

with 1 ≤ z′ ≤ l − 1. Using the sum expansion of q2k−q−2k

q−q−1 we can write

g(z′) = 1 + 2
∑

1≤j≤k

cos((2j − 1)z′π/l).

By taking a derivative of g(z′) we find that it is a decreasing function of z′ on the

interval I ′2 = [2, l
2k−1

], which is nonempty if 2(2k−1) ≤ l. Thus if g(2) < Dimq([1])

then g(z′) < Dimq([1]) on all of I ′2. Expanding Dimq([1]) we compute:

Dimq([1])− g(2) = 2
∑

1≤j≤k

[cos(2jπ/l)− cos(2(2j − 1)π/l)].

Using the trigonometric formulas found in the back of any calculus book we may

express each term cos(2jπ/l)−cos(2(2j−1)π/l) as 2 sin((3j−1)π/l) sin((j−1)π/l).
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Provided 3j− 1 ≤ 3k− 1 ≤ l, each of these terms is positive. But we already have

the stronger restriction 2(2k + 1) ≤ l, thus we have g(z′) < Dimq([1]) on I ′2 that

is, h(z) < Dimq([1]) on I2 = [l − l
2k−1

, l − 2]. We check the case z′ = 1 separately:

Dimq([1])− g(1) =
∑

1≤j≤k

[cos(2jπ/l)− cos((2j − 1)π/l]

and each term can be factored as:

−2 sin(π/2l) sin((4j − 1)π/2l)

which is always strictly negative since 4j − 1 < 2l for all j ≤ k.

The only remaining z to eliminate are those between I1 and I2. To this end we

use the following estimates which come from approximating sin(x) from below by

1− |2x/π − 1| on the interval 0 ≤ x ≤ π:

h(z) <
1

sin(zπ/l)
+ 1 < 2(2k + 1)/π ≤ Dimq([1])

which are valid for z ∈ I3 = [ lπ
4(2k+1)−2π

, l − lπ
4(2k+1)−2π

] provided 2(2k + 1) < l.

It is now easy to see that [1, l − 2] ∪ {l − 1} ⊂ I1 ∪ I2 ∪ I3 thus proving that

h(z) < Dimq([1]) for any z, l, k as in the statement.

With a few modifications to this proof we can show that −h(z) < Dimq([1]). On

I3 our estimates are still valid. We observe that −h(z) is decreasing on [1, l
2k−1

]

so one need only check that Dimq([1]) > −h(1), which is straightforward. By

changing variables as we did above we can also eliminate z ∈ [l − l
2k

, l − 2] using

the observation that Dimq([1]) > 1 again. One must again check the case z = l−1

separately but the same basic arguement works as above except we must use the

stronger condition 4k − 1 ≤ l since the factors involved are cosines. ¤
This lemma contradicts the unitarity claim in Theorem 6.4(b) in [W1]. However,

the discovery of a slight miscalculation in that paper confirms that this claim should

be omitted from the statement of that theorem. Specifically, the application of the

trigonometry rule

sin(x) + sin(y) = 2 sin(
x + y

2
) cos(

x− y

2
)



49

was lacking the 2s in the denominator.

So we have shown that for no q2 an lth root of unity does the categorical q-

dimension achieve the value of the unique positive character of Gr(F) (or Gr(V)),

therefore the categorical trace-form on EndF(W⊗n) fails to be positive definite.

We must show that no Bn-invariant form on EndF(W⊗n) can be positive definite.

Lemma 6.4. There is a simple object Vτ ∈ Ob(F) with τ an integral weight in F

and dimq(Vτ ) < 0.

Proof. By our Scholium 3.14 if all objects with integral weights had positive

q-dimension, the simple objects with half-integral weights would have q-dimensions

all positive or all negative. The first case immediately contradicts the lemma above.

Observing that multiplying any character of Gr(F) by the function (−1)p(λ) (i.e.

negate all half-integral weight entries) we still have a character. But in the second

case this would give us a positive character, and since we have only changed the

signs, this contradicts the above lemma as well. ¤.

Now let Vτ be a simple object with an integral weight and dimq(Vτ ) < 0 as pro-

vided by the above lemma. Then Vτ appears in some V ⊗2n. Let pτ be a projection

onto Vτ that is a positive self-adjoint operator. We may also choose a positive self-

adjoint projection p11 from V ⊗4n onto the trivial object 11. A straightforward com-

putation reveals that p11◦(pτ⊗1V ⊗2n)◦p11 = Trq(pτ )p11. But Trq(pτ ) = dimq(Vτ ) < 0

and the left-hand side of the above equation is a positive operator, and the right-

hand side is clearly not. Since this is a purely algebraic arguement (it relies only

on the braiding) it is an insurmountable obstacle to finding a positive definite

Bn-invariant form on EndF(W⊗n).

6.2 Modularizability

We saw in Section 3.5 that the S-matrix is not invertible for our category F.

The next best hope is that there is some quotient category of F that is modular,

or more generally that there is a functor between F and some modular category.
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This condition called modularizability. The scholium in Section 3.5 gives us an

indication when this might be possible. A recent paper by Bruguières [Br] gives a

simple criterion for determining when a premodular category is modularizable. To

state his result we must give a few definitions. Let O be a premodular category,

with simple objects X and S-matrix (ΣX,Y )X,Y ∈X. Define Z to be the subset of

X consisting of those X for which the corresponding column of the S-matrix is a

multiple of the column corresponding to the identity object 11 ∈ X. That is, X ∈ Z

means there is some complex number D so that DΣY,X = ΣY,11 for all Y ∈ X. Let

{cX,Y : X, Y ∈ X} be the set of braiding operators on O and define

W = {X ∈ X : c−1
X,Y = cY,X∀Y ∈ X}.

Lastly let dimO be the categorical dimension function (derived from the categorical

trace) and θX the twist for the object X ∈ X. Then the criterion for modulariz-

ability is:

Proposition 6.5 (Brugières). The category O is modularizable if and only if for

every X ∈ Z we have X ∈ W, θX = 1X and dimO(X) ∈ N.

We apply this to the category F. From scholium 3.14 we immediately see

that Vγ ∈ Z by setting κ = 0. It also follows that if k ≡ 2, 3 mod 4 F is not

modularizable, since then dimq(Vγ) = −1. To see that in the cases where k ≡
1 mod 4 modularizability fails we just need to compute

θVγ = q〈γ+2ρ,γ〉1Vγ .

One computes that 〈γ+2ρ, γ〉 = al/2 where a is an odd multiple of k, so θVγ 6= 1Vγ .

When k ≡ 0 mod 4, Vγ does satisfy the conditions, so the only remaining work in

order to prove that Z = {11, Vγ}, that is no other simple object Vλ ∈ Z. This will

be left for later research.
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6.3 Future Research

There are several questions that arose during this research that deserve atten-

tion, but were not sufficiently germane to be worked out and included. It is hoped

that they will be solved in future research. We outline each one in what follows.

6.3.1 Fusion Ring Generators

The Grothendieck semiring Gr(F) is called a fusion ring in some papers (see

[Fe]). It is obviously valuable to know the explicit multiplication table for Gr(F)

since this corresponds to decomposing tensor products in the category F. There

are methods for computing parts of the multiplication tables for fusion categories

associated to affine Lie algebras (see [FSS]), but these are somewhat conjectural

and limited. Present research and some preliminary computations suggest that the

fusion rules for tensoring with just the object VΛk
(which are given in Example 2.3)

determine the rules for tensoring with any simple object. The reason is simple: for

any finite-dimensional operator A whose minimal polynomial is equal to its char-

acteristic polynomial the only operators that commute with A are the polynomials

in A. Since the set of incidence matrices M is a commutative set of matrices, every

element Mλ ∈ M will be a polynomial in MΛk
if we can demonstrate that MΛk

has

minimal polynomial of degree |M|. To solve for the Mλ as a polynomial in MΛk
a

Gröbner basis algorithm may be employed. This has proved successful for several

examples up to the rank 4, 15th root of unity case where |M| = 70. If it can be

shown that MΛk
has the property mentioned above in general, it would provide a

nice theoretical tool: to check certain properties of F it would be enough to check

them for VΛk
. It would also prove useful as a new way of computing fusion rules

that could perhaps be applied to other fusion categories.
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6.3.2 Classification of Fusion Categories

Lemma 3.10 indicates that the Perron-Frobenius eigenvector for the category

F of type B is the same as for the corresponding premodular category of Lie type

sp2k otherwise known as type C. It is easy to see that the categories have the same

number of simple objects, and it should be possible to show that they are tensor

equivalent using a similar analysis of the Grothendieck semiring and braiding.

This would be particularly interesting in light of the fact that the categories for

generic q are known to be inequivalent. There are other equivalences between fusion

categories associated to affine Kac-Moody algebras and quantum groups at roots

of unity (see [Fi]). It would be interesting to complete this correspondence between

these three distinct derivations of fusion categories. Conjecturally, the categories

derived from BMW -algebras are all equivalent to some category coming from a

quantum group. But aside from the explicit equivalence described in this work

and the Lie type A case, these remain conjectures. There does not appear to be

any Kac-Moody algebra version of the categories of type B at odd roots of unity.

Although the fixed level representations of the twisted Kac-Moody algebras of type

D are labelled by the same set as the simple objects in the categories F, no fusion

product seems to exist for any twisted Kac-Moody algebra. It should prove to be

related to the equally bad behavior of the categories described here.



Bibliography

[A] H.H. Andersen, Tensor products of quantized tilting modules, Comm. Math.
Phys. 149 (1991), 149-159.

[AP] H.H. Andersen, J. Paradowski, Fusion categories arising from semisimple Lie
algebras, Comm. Math. Phys. 169 (1995) 563-588.

[BK] B. Bakalov, A. Kirillov Jr., Lectures on tensor categories and modular func-
tors. AMS Providence, 2001.

[BW] J. Birman, H. Wenzl, Braids, link polynomials and a new algebra, Trans.
AMS 313 (1989) 249-273.
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