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Abstract. We develop a symbolic computational approach to classifying low-
rank modular fusion categories, up to finite ambiguity. By a generalized form
of Ocneanu rigidity due to Etingof, Ostrik and Nikshych, it is enough to clas-
sify modular fusion algebras of a given rank–that is, to determine the possible
Grothendieck rings with modular realizations. We use this technique to classify
modular categories of rank at most 5 that are non-self-dual, i.e. those for which
some object is not isomorphic to its dual object.

1. Introduction

This paper is concerned with the classification of modular categories as defined
by Turaev (see [20]). This problem has been considered in different guises going
back (at least) to the early 1990s. Some early results are found in the physics
literature where classifications have been obtained for certain restricted classes
of modular fusion algebras: the finite rank unital based ring [15] describing the
tensor product (fusion) rules of a modular category. Gepner and Kapustin [11]
determined those modular fusion algebras of rank ≤ 6 with very small structure
constants (e.g. ≤ 1 for rank 6). Fuchs [9] classified those of rank ≤ 3 under certain
(physically inspired) compatibility conditions, while Eholzer [5] classified modular
fusion algebras of rank ≤ 4 that are strongly-modular, i.e. the kernel of the modular
representation is assumed to contain a congruence subgroup. A very recent result
of Ng and Schauenburg [14] shows that this assumption is superfluous.

Classifying up to fusion algebras leaves only finite ambiguity due to a generalized
form of Ocneanu rigidity due to Etingof, Nikshych and Ostrik (see [7, Remark
2.33]):

Proposition 1.1. There are at most finitely many braided fusion categories real-

izing a given fusion algebra.

It is well known that the number of compatible ribbon structures for a given
braided fusion category is finite (see e.g. [12]), so that the result holds for modular
categories as well.

A recent conjecture due to Wang is:
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Conjecture 1.2. [19, Conjecture 6.1] There are finitely many modular categories

of rank n for any fixed n ∈ N.

In [19] a classification of modular categories of rank n ≤ 4 is given under the
assumption of pseudo-unitarity (which verifies Conjecture 1.2 for these cases). In
fact, categories of rank n = 2, 3 have been classified in greater generality by Ostrik
[16, 17]. Moreover, the conjecture has been verified (for fusion categories) in [7,
Proposition 8.38] under the assumption that the global dimension is integral.

For fixed rank n, the classification breaks naturally into two types: 1) those
categories for which every object is isomorphic to its dual, and 2) the categories
for which at least one object is not isomorphic to its dual. The main results of
this paper provide a classification of modular categories of rank n ≤ 5 of type 2),
up to their Grothendieck rings. We choose to focus on the non-self-dual case for
several reasons, besides the fact that there are fewer parameters than in the self-
dual case. Firstly, one of the main results used in [19] for the self-dual, rank n ≤ 4
case ([19, Theorem 2.14]) does not apply to the non-self-dual case. Secondly, we
recover the results of [19, Appendix] for ranks n ≤ 4 with significantly less effort,
employing Proposition 2.1 to greater advantage as well as a new general result
(Theorem 2.2). Finally, our approach uses symbolic computation techniques that
can be generalized, whereas [19] relies upon (difficult ad hoc) hand computations.

The problem of classifying modular categories can be viewed in parallel with
that of classifying finite simple groups, and is an interesting theoretical problem
from this perspective. Our original motivation for classifying low-rank modular
categories comes from topological quantum computation [8]. Modular categories
play a key role in the mathematical description of topological phases of matter–
the physical systems upon which topological quantum computers are expected to
be built. See [19, Section 6] for details on this relationship. From a symbolic
computation perspective, classifying rank n modular fusion algebras corresponds
to solving a large system of polynomials in three sets of variables: O(n2) algebraic
integers, O(n3) non-negative integers and n roots of unity (of undetermined order).
For n > 2 the system resists a purely machine computation solution, both because
of the system’s complexity and the essential way in which integrality and Galois
groups are used.

Here is a more detailed description of the paper. In Section 2 we obtain some
general results on integral modular categories and apply them to the classification
of rank n = 3, 4 non-self-dual categories. Section 3 gives the classification of
rank n = 5 non-self-dual modular fusion algebras. In Section 4 we summarize
the technique and discuss its potential applications and generalizations. Finally,
the Appendix, by Victor Ostrik, shows how the assumption of pseudo-unitarity is
automatically satisfied up to Galois conjugation.
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2. Preliminaries

A modular category is a finite semisimple C-linear rigid braided balanced monoidal
category with simple identity object satisfying a certain non-degeneracy condition
(invertibility of the S-matrix). For our purposes the precise axioms satisfied by a
modular category will not be important; we refer the interested reader to the text
[1] for details. We shall mostly be interested in the polynomial consequences of
the axioms, which we will describe below. For convenience, we assume that

the categorical dimension is positive: i.e. dim(X) > 0 for every object

X. We refer to this condition as pseudo-unitarity. In other words, we assume
that dim(X) = FPdim(X) where FPdim is the unique strictly positive character
of Gr(C). This differs slightly from the terminology in [7], but conforms with the
assumptions in [19]. As the appendix by V. Ostrik shows, this assumption can be
dispensed with for our main result.

Let C be a rank n modular category with inequivalent simple objects represented
by classes {1 = X0, X1, . . . , Xn−1}. We will abuse notation and refer to Xi as a
simple object as this will cause no confusion. The (class of the) object dual to
Xi will be denoted by either X∗

i or Xi∗ . We denote by Gr(C) the Grothendieck
ring of C, which is a finite rank unital based ring in the notation of [15] and
more specifically is a modular fusion algebra. Since C is braided, Gr(C) must be
commutative.

Let S̃ denote the S-matrix of C with entries s̃ij. Notice that we have s̃0i =

dim(Xi), and S̃2 = D2C where Cij = δi,j∗ and D2 = dim(C) =
∑

i dim(Xi)
2.

Define ψi to be the character of Gr(C) corresponding to the normalized ith column
of S̃, i.e. ψi(Xj) = s̃ij/ dim(Xi). Observe that these characters are orthogonal

since the S̃-matrix is (projectively) unitary, i.e.
∑

k

ψi(Xk)ψj(Xk) = δij dim(C)/ dim(Xi)
2.

We let K = Q({s̃ij : 0 ≤ i, j ≤ n− 1}) be the field generated by Q and all entries
s̃ij and define Gal(C) := Gal(K/Q).

We will make extensive use of the following results from [19, Theorem 2.10]
originally due to Coste and Gannon [3]:

Proposition 2.1. Let Gal(C) be the Galois group of a rank n modular category

C. Then

(1) The action of Gal(C) on K induces an injective group homomorphism

Gal(C) → Sn acting by permutations of ψi.

(2) Let σ be the image of any element of Gal(C) under the above homomor-

phism. Then there exists ǫi,σ = ±1 such that

s̃j,k = ǫσ(j),σǫk,σs̃σ(j),σ−1(k).

(3) Gal(C) is abelian.
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Let Ni denote the fusion matrix corresponding to the simple object Xi, that
is Ni has (k, j)-entry Nk

i,j = dim Hom(Xi ⊗ Xj, Xk), so that Xi → Ni induces
the left-regular representation of Gr(C). We point out that this differs from the
notation of [19] in that the fusion matrices Ni are transposed. The Ni are pair-wise
commuting n× n N-matrices since Gr(C) is commutative. There is an important

relationship between S̃ and the Ni known as the Verlinde formula, representing
the fusion coefficients Nk

i,j as rational functions in the entries of S̃. This is a

consequence of the fact that the S̃ matrix simultaneously diagonalizes the family
of matrices {Ni}. The eigenvalues of Ni are {ψj(Xi) : 0 ≤ j ≤ n − 1} so that
the entries of ψi are algebraic integers (as the characteristic polynomial of Ni is
monic with integer coefficients). From this we see that if ψi is Gal(C)-fixed then
s̃ij/ dim(Xi) ∈ Z. In particular if ψ0 is fixed then C is integral, that is, dim(Xi) is
an integer for each i.

One has the following consequence:

Theorem 2.2. Suppose C is a modular category of odd rank n such that the only

self-dual object is 1. Then C is integral.

Proof. Since complex conjugation interchanges the characters ψi and ψ∗

i it follows
that (1 2)(3 4) · · · (n− 2 n− 1) ∈ G ∼= Gal(C). Since G is abelian, it follows that
G must fix ψ0 hence all dimensions of simple objects are integral. �

In the case of integral modular categories we have:

Lemma 2.3. Suppose C is an integral modular category of rank n. Let p1 ≥ p2 ≥
· · · ≥ pn = 1 be the sequence of dimensions of simple objects ordered in a weakly

decreasing fashion. Then:

(a) the numbers xi := dim(C)/(pi)
2 form a weakly increasing sequence of inte-

gers such that
∑n

i=1 1/xi = 1 and

(b) i ≤ xi ≤ (n− i+ 1)ui where u1 := 1 and uk+1 := uk(uk + 1).

Proof. By [6, Lemma 1.2] dim(C)/ dim(Xi)
2 is an algebraic integer for any modular

category C so in an integral modular category it must be an ordinary integer. Since
dim(C) :=

∑n
i=1 p

2
i , we obtain (a) by dividing by dim(C). The lower bound in (b)

is clear: if some xi < i then 1/xj > 1/i for each j ≤ i so that
∑i

j=1 1/xj > 1,

contradiction. On the other hand, it is a classical result [13] that if
∑k

i=1 1/yk = r
where y1 ≤ y2 ≤ · · · ≤ yk are integers then yi ≤ (k − i+ 1)/ri−1 where r0 = r and
ri+1 := ri − 1/yi+1. So (b) will follow once we have shown that 1/ri−1 ≤ ui for the
special case r0 = 1. This is also a classical problem solved in [4] where it is shown
that 1/um+1 ≤ 1 −

∑m
i=1 1/yi for any m integers yi. �

Remark 2.4. The shifted sequence ui + 1 is known as Sylvester’s sequence, the
first few terms of which are 2, 3, 7, 43, 1807, . . .. Lemma 2.3 suggests an algorithm
for finding the possible dimensions of rank n integral modular categories C: we
look for integers x1 ≤ · · · ≤ xn = dim(C) such that
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(1)
√

xn/xi ∈ N for each i
(2)

∑

i 1/xi = 1 and
(3) the xi satisfy the inequalities of Lemma 2.3(b).

Unfortunately the ui increase at a doubly-exponential rate (u6 is about 3 million),
so this algorithm is quite slow for large n. In fact, this bound is sharp if we only
assume

∑

i 1/xi = 1, as 1
un

+
∑n−1

i=1
1

ui+1
= 1.

The term modular is applied to these categories because the axioms require that
the matrix S̃ is invertible and, moreover, there exists a diagonal matrix T whose
diagonal entries [1, θ1, . . . , θn−1] are roots of unity so that

(

0 −1
1 0

)

→ S̃,

(

1 1
0 1

)

→ T

induces a (projective) representation of the modular group SL(2,Z). In particular,
(S̃T )2 = ζ(S̃)2 for some (known) constant ζ . We shall not use this fact directly,
but we will use the useful relation (see [1, Chapter 3]):

(2.5) θiθj s̃ij =
∑

k

Nk
i∗,j dim(Xk)θk.

In fact, our proof relies explicitly upon S̃ and T (projectively) being a modular

data in Gannon’s sense [10]. That is, we demand that S̃ be (projectively) unitary

and symmetric, T be diagonal and have finite order, dim(X) > 0 for allX, (S̃T )2 =
ζ(S̃)2 and the Verlinde formula must hold. It should be noted that although eqn.
(2.5) can be derived from these axioms, it holds for any ribbon fusion category (see

[1]). Proposition 2.1 also plays a key role, the proof of which relies upon S̃ and T
being a modular data. All other relations we use can be derived from Gannon’s
modular data axioms.

2.1. Ranks 3 and 4. Rank 3 and 4 non-self-dual modular categories have already
been classified in [19]. We include these cases both for completeness and because
our proofs are somewhat shorter. Recall that a fusion category is pointed if every
simple object is invertible. In the pseudo-unitary setting this is equivalent to
dim(Xi) = 1 for any simple object Xi. Pointed modular categories of rank n are
easily classified up to fusion rules: their Grothendieck rings are isomorphic to the
group algebra of an abelian group of order n. Indeed, pointed fusion categories are
of the form V ecωG where G is a finite group and ω is a 3-cocycle on G, that is the
category of finite-dimensional G-graded vector spaces with associativity defined
by ω (see e.g. [7]).

Theorem 2.6. Any rank 3 or 4 non-self-dual modular category is pointed.
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Proof. Firstly, Theorem 2.2 implies that any rank 3 non-self-dual modular category
must be integral. Using Remark 2.4 we obtain only one solution x1 = x2 = x3 = 3
which corresponds to dim(Xi) = 1 for all i–the pointed case.

For the rank 4 case we have the following S̃-matrix:









1 d g g
d x a a
g a h h
g a h h









.

From the formula s̃j,k = ǫτ(j),τǫk,τ s̃τ(j),τ−1(k) for each τ ∈ Gal(C) in Proposition

2.1, we find that the only solution (respecting orthogonality of the columns S̃) is

x = 1, a = −g. Using orthogonality of the columns of S̃ we immediately obtain
d = g2 and D = g2 + 1. Since X2

∼= X∗

3 , we find that dim(X2) dim(X3) = g2 =
1+m1g

2+m2g+m3g where mi = N i
2,3 is the multiplicity of Xi in X2⊗X3. Clearly

m1 = 0 and m2 = m3 since X2⊗X3 is self-dual. We also have dim(X1) dim(X2) =
g3 = n1g

2 + n2g + n3g, where ni = N i
1,2 is the multiplicity of Xi in X1 ⊗X2. Now

n2 = m1 = 0 since

0 = m1 = N1
2,3 = N2

1,2 = 0

as X∗

2 = X3. These facts imply g2 = 1 + 2m2g = n1g + n3. If g is not integral
then m2 > 0 and any linear relation in g over Z must vanish identically, so that
(1−n3)−(2m2−n1)g = 0 implies n3 = 1 and n1 = 2m2. Next consider dim(X2)

2 =
g2 = k1g

2+(k2+k3)g where ki = N i
2,2. We see that k1 = n3 = 1, and k2 = m3 = m2

using the symmetries of the Nk
i,j. Thus we have g2 = g2 + (m2 + k3)g hence

m2 = m3 = 0. But then we have n1 = 2m2 = 0 which cannot happen unless g is
integral. Since D/g = (g2 + 1)/g is an algebraic integer by [6, Lemma 2.1], 1/g is
an integer so g = 1. Thus we arrive at the pointed case for rank 4 as well. �

3. Rank 5

Now let us assume that C is a modular category of rank 5. A classification of all
modular fusion algebras of rank N = 5 with fusion multiplicities Nk

i,j ≤ 3 is found
in [11]. There are two such with non-self-dual objects. In the Kac-Moody alge-
bra (or rational conformal field theory) formulation these are realized as SU(5)1

and SU(3)4/Z3. Quantum group realizations can be obtained as semisimple sub-
quotients of Rep(Uq(sl5)) at q = eπ i /6 and Rep(Uq(sl3)) at q = eπ i /7 where in
the latter case one takes the subcategory generated by objects labeled by integer
weights (see [18] for details). The fusion rules for SU(5)1 are the same as the
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addition in Z5, while the fusion rules for SU(3)4/Z3 are given by:

N1 =













0 1 0 0 0
1 2 1 1 1
0 1 1 1 1
0 1 1 1 0
0 1 1 0 1













, N2 =













0 0 1 0 0
0 1 1 1 1
1 1 1 0 0
0 1 0 0 1
0 1 0 1 0













,

N3 =













0 0 0 0 1
0 1 1 0 1
0 1 0 1 0
1 1 0 0 0
0 0 1 1 0













and N4 = NT
3 . We will adopt Gepner and Kapustin’s notation and denote the

corresponding modular categories as SU(5)1 and SU(3)4/Z3. We will show that
this classification is complete without the assumption Nk

i,j ≤ 3.
We first consider the integral case.

Theorem 3.1. Suppose C is a rank 5 integral modular category. Then C is pointed,

i.e. Gr(C) is isomorphic to Gr(SU(5)1) ∼= Z5.

Proof. From Remark 2.4 we obtain only two possible solutions:

x1 = x2 = x3 = x4 = x5 = 5 and x1 = 2, x2 = x3 = x4 = x5 = 8.

The former corresponds to dim(Xi) = 1 for all i, and hence is pointed. The
latter would be a modular category with four simple objects of dimension 1 and
one simple object of dimension 2. This can be ruled out in the following way:
the objects X0, . . . , X3 of dimension 1 must be invertible and form a group of
order 4 so the eigenvalues of Ni 0 ≤ i ≤ 3 are 4th roots of unity. This implies
that ψ4(Xi) = s̃i,4/2 = ±1 for 0 ≤ i ≤ 3, hence s̃i,4 = ±2 for 0 ≤ i ≤ 3.
But

∑

i |s̃i,4|2 = 8 which is a contradiction. So the only possibility is that C is
pointed. �

Lemma 3.2. Suppose that C is a rank 5 pseudo-unitary modular category with

X∗

3
∼= X4. Then either C is pointed or Gal(C) is isomorphic to the one of the two

S5-subgroups 〈(0 1 2), (3 4)〉 or 〈(0 1), (3 4)〉.
Proof. If ψ0 is Gal(C)-fixed then C is integral, hence pointed by Theorem 3.1. By
Theorem 3.1 any rank 5 modular category with two dual pairs of simple objects
must be integral. We conclude that (3 4) ∈ Gal(C) since complex conjugation fixes
ψi with i ≤ 2 and interchanges ψ3 and ψ4. Thus we may assume that Gal(C) is
an abelian subgroup of CentS5

((3 4)) containing (3 4) that does not fix 0. After
relabeling X1 and X2 if necessary, we see that the only possibilities are those given
in the statement. �
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In either case we may assume that the S̃-matrix for a rank 5 pseudo-unitary
modular category with one dual pair is:

(3.3) S̃ =













1 d f g g
d x y a a
f y z b b
g a b h h
g a b h h













where {d, f, g, x, y, z, a, b} ⊂ R, h = h1 + ih2 ∈ C \R and each of d, f and g are at
least 1 and algebraic integers. We will denote D2 = dim(C) = 1 + d2 + f 2 + 2g2.

Using the symmetries

Nk
i,j = Nk

j,i = N j∗

i,k∗ = Nk∗

i∗,j∗

where the involution on labels ∗ fixes 1 and 2 and 3∗ = 4, we obtain the following
fusion matrices (note that N4 = NT

3 ):

N1 =













0 1 0 0 0
1 n1 n2 n3 n3

0 n2 n4 n5 n5

0 n3 n5 n6 n7

0 n3 n5 n7 n6













,(3.4)

N2 =













0 0 1 0 0
0 n2 n4 n5 n5

1 n4 n8 n9 n9

0 n5 n9 n10 n11

0 n5 n9 n11 n10













,(3.5)

N3 =













0 0 0 0 1
0 n3 n5 n7 n6

0 n5 n9 n11 n10

1 n6 n10 n12 n13

0 n7 n11 n14 n12













.(3.6)

We find that there is a single class of modular categories withGal(C) = 〈(0 1 2), (3 4)〉 ∼=
Z6 (up to fusion rules). Precisely, we have:

Theorem 3.7. Suppose C has Gal(C) = 〈(0 1 2), (3 4)〉 with X3
∼= X∗

4 and X1

and X2 self-dual. Then Gr(C) is isomorphic to Gr(SU(3)4/Z3).

The proof is in several steps, which we outline here:

Step 1 Use the Galois group and S̃2 = D2C to determine S̃ in terms of the simple
dimensions d, f, g.
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Step 2 Use the commutativity of the Ni and certain symmetries of their charac-
teristic polynomials gleaned from Step 1 to obtain a single Diophantine
equation in 3 non-negative integer variables α, β and γ, and expressions
for all Nk

i,j as polynomials in α, β and γ. This uses symbolic computation
techniques (Gröbner bases).

Step 3 Use eqn. (2.5) to find a single (reducible) polynomial of degree 3 satisfied
by θ2 over the field Q(d). Conclude that θ1 and θ2 must be (primitive)
roots of unity of degree 1, 2, 3, 4, 6, 7, 9, 14 or 18.

Step 4 Consider each case from Step 3 to conclude that the Diophantine equation
has no solutions unless θ2 is a 7th root of unity, in which case it has a
unique solution.

Consider the S̃-matrix in eqn. (3.3) and suppose that Gal(C) = 〈(0 1 2), (3 4)〉.
Let σ = (0 1 2) ∈ S5. From the formula s̃j,k = ǫτ(j),τ ǫk,τ s̃τ(j),τ−1(k) for each
τ ∈ Gal(C) in Proposition 2.1, we have the following:

1 = s̃0,0 = ǫ1,σǫ0,σy, d = s̃1,0 = ǫ2,σǫ0,σz,

g = s̃3,0 = ǫ3,σǫ0,σb, x = s̃1,1 = ǫ2,σǫ1,σf,

a = s̃3,1 = ǫ3,σǫ1,σg, a = s̃4,1 = ǫ4,σǫ1,σg,

b = s̃3,2 = ǫ3,σǫ2,σa.

From these we have four possibilities:

Case 1 ǫ0,σ = ǫ1,σ = ǫ2,σ = ǫ3,σ = ǫ4,σ

Case 2 ǫ0,σ = ǫ1,σ 6= ǫ2,σ = ǫ3,σ = ǫ4,σ

Case 3 ǫ0,σ = ǫ2,σ 6= ǫ1,σ = ǫ3,σ = ǫ4,σ

Case 4 ǫ0,σ = ǫ3,σ = ǫ4,σ 6= ǫ1,σ = ǫ2,σ

In Case 1, we have y = 1, z = d, x = f, x = b = g. Then S̃2 = D2C gives us an
easy contradiction that d+ df + f + 2g2 = 0.

For Case 2 we have y = 1, z = −d, x = −f, a = b = −g. Then from S̃2 = D2C
we have d − df + f − 2g2 = 0, which implies that d + f = df + 2g2 ≥ df + 2 and
thus −1 ≥ (d− 1)(f − 1) ≥ 0, a contradiction.

Cases 3 and 4 are equivalent up to permutation of objects X1 and X2, so we will
focus on Case 3. We obtain y = −1, z = d, a = g, b = −g, x = −f . The equation
S̃2 = D2C implies the following:

1 + d2 + f 2 + 2g2 = D2,

d− df − f + 2g2 = 0,

g + dg − fg + 2gh1 = 0,

3g2 + 2(h2
1 + h2

2) = D2,

3g2 + 2h2
1 − 2h2

2 = 0.
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Without loss of generality, we may assume h2 > 0 by conjugating if necessary.
These equations then reduce to

h2 = D/2, h1 = (f − 1 − d)/2,

D2 = 1 + d2 + f 2 + 2g2,

d− df − f + 2g2 = 0.

which describes a variety of dimension 2. The important facts we obtain are: (a)
all of the entries of S̃ are determined by d, f and g, which (b) satisfy the important
relation:

(3.8) d− df − f + 2g2 = 0.

Next we consider the fusion matrices and the Diophantine equations their entries
satisfy. Let us denote by pi(Z) the characteristic polynomial of Ni. From the S̃-
matrix we have:

p1(Z) = (Z − 1)2(Z3 + c1Z
2 + c2Z − 1),

p2(Z) = (Z + 1)2(Z3 + c2Z
2 − c1Z + 1),

p3(Z) = (Z2 + a1Z + a2)(Z
3 + b1Z

2 + b2Z + b3)

where c1 = (f/d− d + 1/f), c2 = (1/d− f − d/f), a1 = −2h1/g, a2 = (|h|2/g)2,
b1 = g(1/f − 1/d− 1), b2 = g2(1/d− 1/df − 1/f) and b3 = g3/df .

Observe that each of the cubic factors of pi and (Z2 + a1Z + a2) are irreducible
over Q, since we assume that the Galois group cyclically permutes the three roots
of each of these cubics, and the roots of the quadratic factor of p3 are not real. In
particular, none of f, d or g is an integer. Moreover, we have Q(d) = Q(d, f, g)
and [Q(d) : Q] = 3. The second statement is a consequence of Q(d)/Q being an
abelian Galois extension, and the first statement follows from the facts that −f/d
is a Galois conjugate of d and b1 ∈ Z.

We obtain several useful relations among the ni by computing the p1 and p2

directly from N1 and N2 and comparing coefficients:

(1) The Z4 coefficient of p1 is equal to −1 times the Z coefficient of p2.
(2) The constant terms of p1 and p2 are −1 and 1 respectively.
(3) the Z3 coefficient of p1 is equal to the Z2 coefficient of p2 and the Z2

coefficient of p1 is equal to −1 times the Z3 coefficient of p2.
(4) The only linear factors of p1 and p2 are (Z − 1) and (Z + 1) respectively.

For example, the last observation implies that n6 = n7 + 1 and n11 = n10 + 1.
The resulting relations among the ni together with those implied by the pairwise
commutativity of the Ni yield two useful results (using Maple’s Gröbner basis
algorithm):

(1) All entries can be uniquely expressed as polynomials in t := n10, v := n12

and u := n14 and



NON-SELF-DUAL MODULAR CATEGORIES 11

(2) u, v and t satisfy the Diophantine equation

(3.9) (v + u)((2t− 1)u− (2t+ 3)v) + 4t2 + 2t+ 1 = 0.

Explicitly in terms of u, v and t the fusion coefficients are:

n1 =
2t(2 + (u− v)2) + (u− v)(u3 − u2v + 3u− v2u+ 5v + v3)

2
,

n2 = u2 − v2 + 2t,

n3 =
((u+ v)(u− v)2 + 3v + u) + 2t(u− v)

2
,

n4 = 2t+ 1, n5 = u+ v,

n6 = 1/2(u2 − v2 + 2t+ 1), n7 = 1/2(u2 − v2 + 2t− 1),

n8 = t(2 + (u− v)2) + 2v2 − 2uv + 1,

n9 = t(u− v) + 2v, n10 = t, n11 = t+ 1,

n12 = v, n13 = v, n14 = u.

Observe that eqn. (3.9) is an indefinite binary quadratic form for fixed t with
discriminant 4(2t + 1)2 (a square) and for any t there are at most finitely many
solutions. It appears that there are infinitely many integers t ≥ 0 for which (3.9)
has solutions in u and v. For t = 0 we have the unique (non-negative) solution
u = 1, v = 0. We will eventually show that this is the only solution that is realized
by a modular category.

Next we describe the relations among the integers u, v and t and the algebraic
integers d, f and g. These come from the fact that ψ0 = [1, d, f, g, g] is a simulta-
neous eigenvector for the Ni with eigenvalue dim(Xi). That is:

(3.10) N1ψ0 = dψ0, N2ψ0 = fψ0, N3ψ0 = gψ0.

The variety described by the vanishing of the ideal generated by eqns. (3.8),(3.9)
and (3.10) is 2-dimensional, so these are not sufficient to determine all of u, v, t, d, f
and g up to finitely many choices.

Next we analyze eqns. (2.5). Since X∗

3
∼= X4 we have that θ4 = θ3, so that eqns.

(2.5) introduce 3 new variables θ1, θ2 and θ3, which are roots of unity. We obtain
the following six equations from (2.5):

−fθ2
1 = 1 + n1dθ1 + n2fθ2 + 2n3gθ3,(3.11)

−θ1θ2 = n2dθ1 + n4fθ2 + 2n5gθ3,(3.12)

gθ1θ3 = n3dθ1 + n5fθ2 + (n6 + n7)gθ3,(3.13)

−gθ2θ3 = n5dθ1 + n9fθ2 + (n10 + n11)g, θ3(3.14)

dθ2
2 = 1 + n4dθ1 + n8fθ2 + 2n9gθ3,(3.15)

(f − d− 1)θ2
3 = 1 + (n6 + n7)dθ1 + (n11 + n10)fθ2 +(3.16)

(2n12 + n13 + n14)gθ3.
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The last equation comes from s̃3,3 + s̃3,4 = 2h1 = (f − d− 1).
Before proceeding, we note that taking eqns. (3.8),(3.10) and (3.11-3.16) to-

gether with the assumptions t = 0, u = 1 and v = 0 imply the following:

θ6
2 + θ5

2 + θ4
2 + θ3

2 + θ2
2 + θ2 + 1 = 0, θ1 = θ3

2, θ3 = θ2

and

d3 − 3d2 − 4d− 1 = 0, f 3 − 4f 2 + 3f + 1 = 0, g3 − 2g2 − g + 1 = 0.

Since t = 0 and eqn. (3.9) imply u = 1 and v = 0 we see that if we show that
the relations (3.9), (3.8), (3.10) and (3.11-3.16) together with assumptions that
the θi are roots of unity and u, v and t are integral force t = 0, then Theorem 3.7
will follow.

With this in mind, we first wish to bound the degree of the root of unity θ2. We
claim that θ2 satisfies a polynomial of degree at most 2 with coefficients in Q(d).

We use (3.12) to solve

θ1 = (n4fθ2 + 2n5gθ3)/(θ2 + n2d)

which is possible since θ2 +n2d = θ2 +(u2−v2+2t)d 6= 0 since |d| 6= 1 and |θ2| 6= 0.
We then eliminate θ1 from the remaining 5 relations and take their numerators.
Under this substitution (3.14) remains linear in θ3 so that we may solve

θ3 = − fθ2(n9θ2 + n9n2d− n5dn4)

g(θ2
2 + (n11 + n10 + n2d)θ2 − 2n2

5d+ n11n2d+ n10n2d)
.

If the denominator of this expression vanishes then θ2 satisfies a monic degree two
polynomial with coefficients in Q(d) and the claim follows.

Otherwise, we may eliminate θ3 from the remaining 4 relations to obtain poly-
nomials in Q(d)[θ2]. By factoring these polynomials and removing spurious factors
(such as θ2 + n2d) we get two polynomials of degree 4 (from (3.13) and (3.15))
and two polynomials of degree 5 (from (3.11) and (3.16)). Expressing the coef-
ficients of the two degree 4 polynomials in terms of d, f, g, t, u and v and reduc-
ing modulo the ideal generated by eqns. (3.9), (3.8) and (3.10) these become
(u+ v)θ4

2 + · · ·+ d2(u+ v) and dθ4
2 + · · ·+ d where the omitted terms are too long

to include here. We cancel the θ4
2 terms to obtain a polynomial of degree 3 in θ2

with coefficients in Q(d) with constant term d(d2 − 1)(u + v) 6= 0 (since u and v
cannot both be zero as otherwise (3.9) has no integer solutions for t).

Since θ2 satisfies a (non-zero) polynomial of degree at most 3 over Q(d), we
see that m := [Q(θ2, d) : Q(d)] ∈ {1, 2, 3}, which is a Galois extention since θ2
is a root of unity. We can immediately eliminate m = 3 since the degree of the
non-trivial cyclotomic extension ℓ := [Q(θ2) : Q] cannot divide 9. Thus the claim
follows so that ℓ ∈ {1, 2, 6} hence θ2 must be a primitive root of unity of degree
s ∈ {1, 2, 3, 4, 6, 7, 9, 14, 18}. Moreover, since θ3 ∈ Q(θ2, d) and θ1 ∈ Q(θ3, θ2, d)
the same is true of θ1 and θ3.
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We can now proceed to Step 4. We systematically eliminate all possibilities
except s = 7. The strategy is as follows:

(a) Let I be ideal generated by eqns. (3.9), (3.8), (3.10), (3.11-3.16) and
ϕs(θ2)–the cyclotomic polynomial whose roots are primitive sth roots of
unity.

(b) Compute a Gröbner basis for I with respect to the lexicographic order
d < f < g < θ1 < θ2 < θ3 < u < v < t.

(c) Factor the first polynomial in the output of step (b), which will be a poly-
nomial in v, t (or just t).

(d) Conclude that no integer solutions exist (by parity arguments, for exam-
ple).

We consider each case in turn.

Case 3.17. Assume that s = 1, (i.e. θ2 = 1). Then we find that at least one of

the following three polynomials must vanish:

(2t+ 1)(6t+ 1),

64v4 + (104 + 32t2 − 128t)v2 + (7 − 10t+ 4t2)2 or

16(1 + t)2v4 + (4(2t− 1)(1 + t)(t2 − 4t− 2))v2 + (4t2 + 2t+ 1)(t2 − t+ 1)2.

Clearly the first expression cannot be zero, while the latter two are odd for t, v ∈ Z

hence have no solutions.

Case 3.18. Assume that s = 2. Then (2t+ 1)(6t+ 1)(4t4 + 8t3 + 5t2 + t− 1) = 0
which clearly has no integer solutions.

Case 3.19. Now suppose s = 4. Then we obtain the consequence:

(2t+ 1)(4t2 − 4t− 1)(4t6 + 12t5 + 7t4 − 6t3 − 11t2 − 6t− 1)

which clearly has no integer roots.

Case 3.20. If s = 3 then t, v must satisfy:

(1 + 7t+ 16t2 + 18t3 + 9t4)(4t2 + 2t+ 1 − 8v2) = 0

for which both factors are odd for integer t, v.

Case 3.21. If s = 6 then t must satisfy:

(8t2 − 4t− 1)(128t8 + 512t7 + 904t6 + 920t5 + 573t4 + 210t3 + 36t2 − t− 1) = 0

which again we see is an odd number for any integer t.

Case 3.22. If s = 7 then t must satisfy

t(1 + t)(8t3 + 4t2 − 4t− 1)(8t3 − 12t2 − 8t− 1)P18(t)

where P18(t) is a polynomial of degree 18 that takes odd values for t ∈ Z. We
conclude that t = 0 is the only non-negative integer solution. We have seen that



14 SEUNG-MOON HONG AND ERIC ROWELL

t = 0 implies θ2 is a 7th root of unity, so this uniquely determines all ni, d, f and
g as well as θ1 and θ3 up to the particular choice of a 7th root of unity θ2.

Case 3.23. If s = 9 then t must satisfy the following polynomial modulo 2:

(t6 − t3 + 1)(t6 + t4 + t3 + t+ 1),

which is clearly odd.

Case 3.24. If s = 14 then t must satisfy:

(8t3 + 4t2 − 4t− 1)(64t6 + 192t5 − 208t4 − 64t3 + 32t2 + 12t+ 1)Q24(t)

where Q24(t) = 212t24+ · · ·+23. The first two factors are clearly odd and so cannot
be zero. Any non-negative integer roots of the polynomial Q24(t) must be 1, 2, 4
or 8 by the rational-root theorem, each of which can be eliminated.

Case 3.25. If s = 18 then t must satisfy:

(24t3 − 6t− 1)(64t6 − 192t4 − 32t3 + 36t2 + 12t+ 1)R24(t)

where R24(t) is a polynomial of degree 24 with R24(t) = (t12 + t10 + t6 + t + 1)
(mod 2). Each factor takes odd values for integral t, so there are no solutions.

This completes the proof of Theorem 3.7.

Theorem 3.26. A category C as in Lemma 3.2 with Gal(C) isomorphic to 〈(0 1), (3 4)〉
does not exist.

Proof. Consider the S̃-matrix in eqn. (3.3) and let σ = (0 1) ∈ S5. From the
formula s̃j,k = ǫτ(j),τ ǫk,τ s̃τ(j),τ−1(k) for each τ ∈ Gal(C) in Proposition 2.1, we have
the following:

1 = s̃0,0 = ǫ1,σǫ0,σx(3.27)

b = s̃3,2 = ǫ3,σǫ2,σb(3.28)

f = s̃2,0 = ǫ2,σǫ0,σy(3.29)

y = s̃2,1 = ǫ2,σǫ1,σf(3.30)

g = s̃3,0 = ǫ3,σǫ0,σa(3.31)

We notice two facts: firstly, ǫ0,σ = ǫ1,σ from (3.29) and (3.30), and thus x = 1 from
(3.27). Secondly: provided b 6= 0, ǫ2,σ = ǫ3,σ from (3.28), thus ǫ2,σǫ0,σ = ǫ3,σǫ0,σ,
which means we have two possibilities: y = f and a = g, or y = −f and a = −g
from (3.29) and (3.31). If b = 0, (3.28) gives no information, and the analysis is
more delicate.

We first assume that either y = f and a = g or y = −f and a = −g. For the
case that y = f and a = g, we have an easy contradiction as follows: S̃2 = D2C
implies that 2d+ f 2 + 2g2 = 0 which contradicts d > 0.
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Now we consider the other case that y = −f and a = −g. This gives us the
following:

D2 = 1 + d2 + f 2 + 2g2(3.32)

2d = f 2 + 2g2(3.33)

f(d− 1 − z) = 2gb(3.34)

D2 = z2 + 2(b2 + f 2)(3.35)

2(g2 + h2
1 − h2

2) + b2 = 0(3.36)

g(1 − d+ 2h2) + fb = 0(3.37)

2fg + zb + 2bh1 = 0(3.38)

2(g2 + h2
1 + h2

2) + b2 = D2(3.39)

From (3.32) and (3.33) we obtain D = d + 1 (assuming D > 0 and d ≥ 1). By
replacing S̃ by its complex conjugate if necessary, we may assume that h2 > 0 so
that (3.36) and (3.39) imply h2 = D/2. To derive further consequences of these
equations we use Maple’s Gröbner basis algorithm with a monomial order that
eliminates D and g. One consequence is:

(3.40) (2h1(D − 1) + 2g2 +D −D2)(2h1 − 2g2 +D) = 0

so we have two possibilities: h1 = −2g2
−D+D2

2D−2
, or h1 = g2 − D

2
.

For the first case, we obtain as a consequence (1−D+g2)(fg+Db−b) = 0. The
first factor is non-zero since (3.33) implies D − 1 = d = g2 + 1

2
f 2 so D > 1 + g2.

Thus we must have fg = b(1 −D) = −bd. Notice that b
f

= −g
d

are both integers

so that −g
d

= σ(−g
d
) = g hence d = −1, a contradiction.

For the other case h1 = g2− D
2
, we obtain (1−D+g2)(fg−b) = 0 which implies

fg = b from the same reasoning as above. This means that g = b
f

is an integer.

Since σ permutes the roots g and −g
d

we get d = −1.
We are left with two remaining cases: b = 0 and either (Case 1) y = f and

a = −g or (Case 2) y = −f and a = g. Although these cases can likely be
eliminated without resorting to symbolic computation techniques, we follow the
strategy used in the proof of Theorem 3.7 to further illustrate its efficacy. We first
consider Case 1 as it is slightly more involved. The S-matrix is:

S̃ =













1 d f g g
d 1 f −g −g
f f z 0 0
g −g 0 h h
g −g 0 h h













.

Clearly g cannot be an integer, since Gal(C) interchanges g and −g/d. similarly,

f ∈ N if and only if d ∈ N if and only if d = 1. The equation S̃2 = D2C
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immediately implies:

z = −(1 + d), h1 =
d− 1

2
, d = g2 − f 2/2.

Notice that if d = 1 then z = −2 and z/f ∈ Z implies f = 1 or f = 2. But the
last relation and the fact that g2 is an algebraic integer imply that if d or f are
integral, then d = 1, f = 2, g =

√
3. We will consider this case seperately; for now

assume that d is not an integer.
Next we consider the Diophantine equations satisfied by the entries ni of the

fusion matrices N1, N2 and N3 from (3.4-3.6). In this case we have a common
integer eigenvalue for the Ni, namely ψ2 = (1, 1,−m, 0, 0) where m = (d + 1)/f .
Besides the commutation relations, we have relations obtained from the charac-
teristic polynomials and the relations involving m. We also obtain

(n10 − n11)(m+ n10 − n11) = (n6 − n7)
2 − 1 = 0

from the fact that the only integer eigenvalues of N1 are ±1 and the only integer
eigenvalues of N2 are 0 and −m (provided d 6= 1). From these relations we can
solve for all of the Ni entries and m in terms of four variables u := n8, v := n11,
t := n13 and w := n14 which satisfy the three relations:

(t− w)(t3 + t2w + 2t− 2tv2 − tw2 + 2wv2 + 2w − w3),

(t− w)(−3vw − vt+ ut+ uw),

2 + t2 − w2 + 2uv − 4v2.

This system of Diophantine equations has infinitely many solutions (e.g. u = v =
1, t = w). We proceed to analyze the relations implied by eqns. (2.5):

θ2
1 = 1 + n1dθ1 + n2fθ2 + 2n3gθ3,(3.41)

θ1θ2f = n2dθ1 + n4fθ2 + 2n5gθ3,(3.42)

−θ1θ3g = n3dθ1 + n5fθ2 + (n6 + n7)gθ3,(3.43)

0 = n5dθ1 + n9fθ2 + (n10 + n11)gθ3,(3.44)

−θ2
2(d+ 1) = 1 + n4dθ1 + n8fθ2 + 2n9gθ3,(3.45)

θ2
3(d− 1) = 1 + dθ1(n7 + n6) + fθ2(n11 + n10) + gθ3(2n12 + n13 + n14)(3.46)

as well as the relations implied by the common positive eigenvector ψ0. By combin-
ing the relations involving θi as well as the S-matrix and Ni entries we immediately
obtain θ1 = 1. From this we are able to eliminate θ3 (assuming n5 6= 0, which
implies d = 1) and find a polynomial of degree two in θ2 with coefficients in
Q(d) = Q(d, f, g). Thus [Q(θ2) : Q] ∈ {1, 2, 4} so that θ2 has degree 1 ≤ k ≤ 6
or k ∈ {8, 10, 12}. Using a Gröbner basis algorithm with pure-lexicographic order
d < f < g < · · · < t < w on the full set of relations together with the appropriate
cyclotomic polynomial in θ2, we eliminate each of these cases in turn. In each
k ≥ 3 we obtain as a consequence a product of irreducible polynomials of degree
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at least 2 in w with the Diophantine equation (t−w)2 +4, which has no solutions.
In case k = 1, 2 we obtain d = 1.

So as soon as we rule out d = 1, we are done with Case 1. We find that in this
case we have:

n1 = n2 = n3 = n5 = n6 = n9 = n12 = n13 = n14 = 0,

n4 = n7 = n8 = n10 = n11 = 1.

From (3.44) we immediately obtain θ3 = 0, a contradiction.
Case 2 is similar, but slightly easier. Here we have S-matrix:

S̃ =













1 d f g g
d 1 −f g g
f −f z 0 0
g g 0 h h
g g 0 h h













.

Since Gal(C) interchanges ψ0 and ψ1 we see that in this case if any of g, f or d are
integral, f = 0, a contradiction. The rest of the proof is essentially the same as
for Case 1: one finds that θ1 = 1 and [Q(θ2) : Q] must be 1, 2 or 4. Going through
the cases one finds that there are no integer solutions. �

4. Conclusions and Future Directions

We briefly describe how our computational strategy can potentially be employed
to classify modular categories of fixed (low) rank n, or at least verify Conjecture
1.2 for n. First one classifies the integral modular categories, perhaps using Lemma
2.3. Next one determines all abelian subgroups of Sn that do not fix the label 0 and
considers them case-by-case. From Proposition 2.1 and the equation S̃2 = D2C one
determines the form of the S̃-matrix, eliminating as many of the S̃-matrix variables
as possible. Many cases will be eliminated in this way. For each remaining case,
one uses the fusion matrices and the coefficients of their characteristic polynomials
to obtain Diophantine equations and eliminate integer variables using a Gröbner
basis algorithm. From relation (2.5) one determines the possible degrees of the

roots of unity θi. Finally one uses the relations among the S̃-matrix entries, the
fusion multiplicities and the θi together with assumptions on the degree of the θi

to obtain new Diophantine equations. These new Diophantine equations will often
give finitely many solutions.

In this work we have classified (the Grothendieck semirings of) modular cate-
gories under the restrictions: 1) some object is non-self-dual, 2) the dimensions of
simple objects are positive and 3) rank ≤ 5. The strategy described above does
not require any of these restrictions, and we make some remarks on the complexity
of removing these restrictions.
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(1) To classify rank 5 non-integral pseudo-unitary self-dual modular categories
one must consider around 9 Galois groups, only two of which are known to
be realized for a modular category.

(2) The pseudo-unitarity assumption can probably be removed without loss
of generality for rank ≤ 5, although this assumption is often physically
justified. Indeed, see Appendix A for a proof that for rank 5 non-self-
dual modular categories, this assumption is superfluous. For rank 6, it is
known that there are modular fusion algebras that have no pseudo-unitary
realization (see [18]) but are realized as Gr(C) for a modular category C

nonetheless.
(3) In rank 6 one encounters product categories, and at least 9 modular fusion

algebras are known to exist. The (two) known non-self-dual examples are
products of the unique rank 3 non-self-dual fusion algebra with each of the
two rank 2 fusion algebras. Under assumptions 1) and 2) the classification
could likely be carried out to rank 7 using our methods.

Finally, while the assumption of modularity seems critical to our approach,
analogous results can presumably be obtained for pre-modular categories, in which
one omits the invertibility of the S-matrix. Bruguières [2] has shown that if a
pre-modular category fails to be modular then two columns of the S-matrix are
proportional so that Galois group identities might still be obtained. Moreover,
eqn. (2.5) and various other identities hold generally in a pre-modular category
so that a computational approach is still viable.

Appendix A. On pseudo-unitarity, by Victor Ostrik

The goal of this Appendix is to explain that the pseudo-unitarity assumption is
automatically satisfied (up to the action of Galois group) in the setting of Theorems
3.1, 3.7 and 3.26.

Lemma A.1. Let C be a spherical fusion category such that the categorical dimen-

sion of any object is integral. Then C is pseudo-unitary.

Proof. Let D be the global dimension of C and let ∆ = FPdim(C). As it is
explained in [7, proof of Proposition 8.22] we have D/∆ = d ≤ 1 where d is the
dimension of some simple object in the Drinfeld center of C. Since by assumption
d ∈ Z we see that d = 1 and D = ∆. By definition (see [7, §8.4]) this means that
the category C is pseudo-unitary. �

Remark A.2. It follows from [7, Proposition 8.23] that the category C has a
spherical structure such that all dimensions are nonnegative integers. For a braided
fusion category C its modularity is not affected by the change of spherical structure,
so we can assume that C is pseudo-unitary in the sense of Section 2.

Proposition A.3. Let C be a non-self-dual modular category of rank 5. Then

some Galois conjugate of C is pseudo-unitary.
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Proof. We are going to use notations from Section 3. It is clear that Gal(C)
permutes labels {0, 1, 2} between themselves. Let i ∈ {0, 1, 2} be the label such
that ψi = FPdim. If 0 and i are in the same Gal(C)−orbit then we are done.
Assume not. Then clearly either 0 or i (or both) is invariant under Gal(C). In any
case Lemma A.1 and [7, Proposition 8.24] show that C is pseudo-unitary. �

Remark A.4. Similar reasoning shows that a modular category C of rank 4 is
Galois conjugate to a pseudo-unitary one except for the case when Gal(C) ⊂ S4

has precisely 2 orbits of size 2 (this is case 5 in [19, proof of Theorem 4.1]). In
this case we indeed have an example of category which is not Galois conjugate to
a pseudo-unitary one, namely the tensor product of Fibonacci category with its
Galois conjugate (see [7, Remark 8.26]). It seems reasonable to expect that there
are no other examples of this kind in rank 4.
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