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Abstract. We study the problem of determining if the braid group represen-
tations obtained from quantum groups of types E, F and G at roots of unity
have infinite image or not. In particular we show that when the fusion categories
associated with these quantum groups are not weakly integral, the braid group
images are infinite. This provides further evidence for a recent conjecture that
weak integrality is necessary and sufficient for the braid group representations
associated with any braided fusion category to have finite image.

1. Introduction

The n-strand braid group Bn is defined abstractly by generators σ1, σ2, . . . , σn−1

satisfying relations:

(R1) σiσi+1σi = σi+1σiσi+1, 1 ≤ i ≤ n − 2
(R2) σjσi = σiσj , |i − j| > 1.

Given an object X in a braided fusion category C the braiding cX,X ∈ End(X⊗2)
allows one to construct a family of braid group representations via the homomor-
phism CBn → End(X⊗n) defined on the braid group generators σi by

σi → Id⊗i−1
X ⊗ cX,X ⊗ Id⊗n−i−1

X .

For any simple object Y ⊂ X⊗n the simple End(X⊗n)-modules Hom(Y, X⊗n)
become Bn representations (although not necessarily irreducible). In this paper
we consider the problem of determining when the images of these representations
are finite groups. We will say a category C has property F if, for all objects X and
all n, the corresponding braid group representations factor over finite groups. For
example, the representation category Rep(DωG) of the twisted double of a finite
group G always has property F [6]. Various cases related to Hecke- and BMW-
algebras have been studied in the literature, see [7, 8, 9, 10, 11]. Recent interest
in this question has come from the study of topological quantum computation, see
[8] for particulars.

For any object X in a fusion category one defines the FP-dimension FPdim(X)
(see [4]) to be the largest (necessarily real) eigenvalue of the matrix representing X
in the left-regular representation of the Grothendieck semiring. That is, FPdim(X)
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is the largest eigenvalue of the matrix whose (i, j)th entry is the multiplicity of the
simple object Xj in X⊗Xi. A fusion category is said to be integral if FPdim(X) ∈
N for every object, and weakly integral if FPdim(Xi)

2 ∈ N for any simple object
Xi, or, equivalently, if

∑

i(FPdim(Xi))
2 ∈ N where the sum is over (representatives

of isomorphism classes of) simple objects.
Empirical evidence (from the papers mentioned above, for example) partially

motivates (see also [17, Section 6] and [13]):

Conjecture 1.1. A braided fusion category C has property F if, and only if, the
Frobenius-Perron dimension FPdim(C) of C is an integer, (i.e. C is weakly integral).

For example this conjecture predicts that the braid group images arising from
any finite dimensional semisimple quasi-triangular quasi-Hopf algebra must be
finite groups.

The goal of this paper is to verify one direction of this conjecture for a large
class of braided fusion categories–namely, we will show that if C is a non-weakly-
integral braided fusion category associated to a quantum group of exceptional Lie
type at a root of unity then the braid group images are infinite. For classical Lie
types A, B, C and D results of this type have already appeared in [8] and [11].

The body of the paper is organized into four sections. In Section 2 we outline
the necessary background for the problem. Section 3 classifies the categories C
associated with exceptional-type quantum groups which are weakly integral and
in Section 4 we show that property F fails in the non-weakly-integral cases. We
make some final remarks about the problem in Section 5.

2. Preliminaries

Associated to any semisimple finite dimensional Lie algebra g and a complex
number q such that q2 is a primitive ℓth root of unity is a ribbon fusion category
C(g, q, ℓ). The construction is essentially due to Andersen [1] and his collaborators.
We refer the reader to the survey paper [15] and the texts [2] and [21] for a more
complete treatment.

We shall denote q-numbers in the standard way, i.e. [n] := qn−q−n

q−q−1 . Let Φ+

denote the positive roots for the system of type g equipped with the form 〈−,−〉
normalized so that 〈α, α〉 = 2 for short roots, and Φ̌+ denote the positive coroots.
The dominant Weyl alcove will be denoted P+ and we will denote the fundamental
weights by λi. Define m to be the ratio of the squared-lengths of a long root and a
short root so that m = 1 for Lie type E, m = 2 for Lie type F4 and m = 3 for Lie
type G2. Let ϑ0 be the highest root and ϑ1 be the highest short root. The simple
objects in C(g, q, ℓ) are labeled by:

Cℓ(g) :=

{

{λ ∈ P+ : 〈λ + ρ, ϑ0〉 < ℓ} if m | ℓ

{λ ∈ P+ : 〈λ + ρ, ϑ1〉 < ℓ} if m ∤ ℓ
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In this notation the FP -dimension for the simple object in C(g, q, ℓ) labelled by
highest weight λ is obtained by setting q = eπi/ℓ in:

FPdim(Vλ) :=

{

∏

α∈Φ+

[〈λ+ρ,α〉]
[〈ρ,α〉]

, m | ℓ
∏

α̌∈Φ̌+

[〈λ+ρ,α̌〉]
[〈ρ,α̌〉]

, m ∤ ℓ

The first case is well-known, see [23] for a proof of positivity. The latter case is
more recent, a proof is found in [16].

To deduce the infinitude of the braid group images we will employ the main
result in [18] reproduced here for the reader’s convenience. Let ϕ : B3 → GL(V )
be a d-dimensional irreducible representation with 2 ≤ d ≤ 5 and set A = ϕ(σ1)
and B = ϕ(σ2). Let G denote the image ϕ(B3) = 〈A, B〉 i.e. the group generated
by A and B and define S := Spec(A) = Spec(B).

Definition 2.1. A linear group Γ ⊂ GL(V ) is imprimitive if V is irreducible and
can be expressed as a direct sum of subspaces Vi which Γ permutes nontrivially.
Otherwise, we say that Γ is primitive.

Theorem 2.2 ([18]). Let ϕ, G, A and S be defined as in the previous paragraph.
Let S = {λ1, . . . , λd}, and define the projective order of A by

po(A) := min{t : (λ1)
t = (λ2)

t = · · · = (λd)
t}.

We use the convention that each successive statement excludes the hypotheses of
all of the preceding cases.

(a) Suppose some λi is not a root of unity, or λi = λj for some i 6= j. Then G
is infinite.

(b) Suppose po(A) ≤ 5. Then G is finite.
(c) Suppose G is imprimitive. Then S is of the form:

(i) {±χ, α} or χ{1, ω, ω2} ∪ {α} with ω a primitive 3rd root of unity and
G is finite or

(ii) {±r,±s}. In this case if u = r/s is a root of unity of order o(u) ∈
{7, 8, 9} ∪ [11,∞) then G is infinite, if o(u) = 6, G is finite and if
o(u) = 5 or 10 one cannot decide |G| without further information.

(d) Suppose G is primitive. Then:
(i) If d = 2 then G is infinite.
(ii) If d = 3 and po(A) ≥ 8 then G is infinite. If po(A) = 7, and 1

λ1
S

is Galois conjugate to {1, e2π i /7, e2kπ i /7} with k even, G is infinite,
whereas if k is odd, G is finite.

(iii) If d = 4 and po(A) 6∈ {6, . . . , 10, 12, 15, 20, 24} then G is infinite.
(iv) If d = 5 and po(A) ∈ {7, 8} ∪ [13,∞) then G is infinite.

Notice that by (a) if A is not diagonalizable then it has infinite order, so that
in this case “projective order” is a misnomer. Since we will be using this theorem
to show the image of B3 is infinite, this should not cause any confusion.
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In many cases irreducibility may be deduced from:

Lemma 2.3. [19, Lemma 3.2] Suppose Z is a simple self-dual object such that

Z⊗2 is isomorphic to
⊕d

i=1 Yi where Yi are distinct simple objects and such that σ1

acts on each Yi by distinct scalars. Then B3 acts irreducibly on the d-dimensional
vector space Hom(Z, Z⊗3).

In order to use these results we must have the eigenvalues of the image of σ1 at
our disposal in order to compute the projective order of the image of σ1. These can
be deduced from the quantum group via Reshetikhin’s formula (see [12][Corollary
2.22(3)]): Suppose that V is an irreducible highest weight representation of Uqg

labeled by λ and W is a subrepresentation of V ⊗V labeled by µ. Assume further
that V ⊗2 is multiplicity free.

(1) (cV,V )|W = ±f(λ)q〈µ,µ+2ρ〉/21W

where f(λ) is an overall scale factor that depends only on λ and the sign is +1
if W appears in the symmetrization of V ⊗ V and −1 if W appears in the anti-
symmetrization of V ⊗V . Since the ribbon structure of C(g, q, ℓ) is inherited from
that of Rep(Uqg) we may use eqn. (1) to compute the eigenvalues of the action
of the generators of B3 on End(V ⊗3). The quantity θµ := q〈µ+2ρ,µ〉 is the twist
corresponding to the object W . It follows from the axioms of a ribbon category
that the scalar by which (cV,V )2 acts on Hom(W, V ⊗2) is θW /(θV )2 for W a simple
subobject of V ⊗ V (with V simple and V ⊗ V multiplicity free). For a general
ribbon category the objects have no structure so the determining the signs of the
eigenvalues of cV,V is a bit more delicate.

3. Weakly integrality

In this section we classify the pairs (g, ℓ) with g of exceptional Lie type such
that C(g, q, ℓ) is weakly integral. The classification is summarized in Table 1.

One important fact is the following:

Proposition 3.1. (see [4]) If C is a weakly integral fusion category then Cad is an
integral fusion category.

Here Cad is the adjoint subcategory generated by simple subobjects of X ⊗ X∗

for each X. Thus to show that C is not weakly integral it is enough to find an
object in Cad that has non-integer FP -dimension.

Proposition 3.2. The ribbon category C(g, q, ℓ) is weakly integral with rank at
least 2 if and only if (g, ℓ) is in Table 1.

Proof. Direct computation show that the categories listed are weakly integral.
To verify that no other weakly integral cases exist is tedious but straightforward.

We will first illustrate how this is done by giving complete details for type g2, and
then describe how to carry out the computation for other types.
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Table 1. Non-trivial Weakly Integral C(g, q, ℓ)

g ℓ Notes

e6 13 pointed, rank 3
e7 19 pointed, rank 2
e8 32 rank 3
f4 none
g2 8 pointed, rank 2

First suppose that 3 | ℓ. C := C(g2, q, ℓ) is trivial (rank 1) for ℓ = 12 so we
assume ℓ ≥ 15. Let λ1 be the highest weight corresponding to the 7-dimensional
representation of g2, and denote by X the corresponding simple object in C. Note
that X is self-dual and X ∈ Cad since X is a subobject of X⊗X. Now FPdim(X) =
[2][7][12]

[4][6]
, so if FPdim(X) = k ∈ Z then the primitive 2ℓth root of unity q satisfies

the polynomial in Z[q]:

q20 + q18 + q12 + (1 − k)q10 + q8 + q2 + 1.

Thus the minimal polynomial of q must divide the above polynomial so in par-
ticular, φ(2ℓ) ≤ 20 where φ is Euler’s totient function. This implies that ℓ ∈
{15, 18, . . . , 33}. Computing FPdim(X) for these 7 values of ℓ we find no integers,
hence C is not integral.

Now suppose that 3 ∤ ℓ. Here C is trivial for ℓ = 7 and pointed (integral) for ℓ = 8
so we assume ℓ ≥ 10. From FPdim(X) = [7] one finds that if FPdim(X) = k ∈ Z
then φ(2ℓ) ≤ 12 as q must satisfy a degree 12 polynomial. From this we reduce the
problem to checking that FPdim(X) is non-integral for ℓ ∈ {10, 11, 13, 14}, which
is easily done. Thus C is not integral except in the case ℓ = 8 found in Table 1.

The other exceptional types can be done in a similar fashion: find a convenient
object X ∈ C(g, q, ℓ)ad, assume that FPdim(X) = k ∈ Z to obtain an upper
bound on ℓ by bounding φ(2ℓ) as above and then checking that FPdim(X) is non-
integral for the (finitely many) remaining values of ℓ. Table 2 gives the necessary
data for all exceptional Lie types. The second column of Table 2 gives a pair of
weights (ν, µ) such that Vν ⊂ Vµ ⊗ V ∗

µ , that is, so that Vν ∈ C(g, q, ℓ)ad. The
corresponding FPdim(Vν) is given in the third column, and the upper bound on ℓ
that the assumption FPdim(Vν) ∈ Z induces is found in the last column.

�

4. Failure of property F

In this section we demonstrate that property F fails for each pair (g, ℓ) such
that C(g, q, ℓ) is not weakly integral (see Table 1).
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Table 2. Objects of Non-integral FP -dimension

g (ν, µ): Vν ⊂ Vµ ⊗ V ∗
µ FPdim(Vν) maximum ℓ

e6 (λ2, λ1)
[8][9][13]

[4][3]
75

e7 (λ1, λ7)
[12][14][19]

[4][6]
120

e8 (λ8, λ8)
[20][24][31]

[6][10]
210

f4, ℓ even (λ1, λ1)
[3][8][13][18]

[4][6][9]
66

f4, ℓ odd (λ1, λ1)
[13][8]

[4]
51

g2, 3 | ℓ (λ1, λ1)
[2][7][12]

[4][6]
33

g2, 3 ∤ ℓ (λ1, λ1) [7] 14

4.1. Lie type G2.

Theorem 4.1. The non-trivial categories C(g2, q, ℓ) do not have property F unless
ℓ = 8.

Proof. We first remark that it is enough to consider only the specific choice q =
eπi/ℓ as Galois conjugation does not affect the question of finiteness of the image
of B3: the relations in a finite group presentation induce polynomial equations in
the entries with integer coefficients. By non-trivial we mean that the rank is at
least 2.

Let V be the simple object labeled by λ1 = ε1 −ε3 i.e. the highest weight of the
7-dimensional fundamental representation of g2. There are two cases to consider:
3 | ℓ and 3 ∤ ℓ.

We first consider the cases where 3 | ℓ. Here ℓ = 12 corresponds to the trivial
rank 1 category and ℓ = 15 has rank 2. The latter case was considered in [17],
where it is called the “Fibonacci category” and can be identified with a subcategory
of C(sl2, q, 5). In particular it is known to have infinite braid group image (going
back to [9]). We claim that, provided ℓ ≥ 18, the rank of C(g2, q, ℓ) is at least 4 and
Hom(V, V ⊗3) is a 4-dimensional irreducible representation of B3. Note that V ⊗2 ∼=
1⊕V ⊕Vλ2

⊕V2λ1
, and that each of these summands is in Cℓ(g2). One computes the

eigenvalues of the image of σ1 acting on Hom(V, V ⊗3) using Reshetikhin’s formula

(1): {1,−q6,−q12, q14} (note that
∧2 V ∼= V ⊕ Vλ2

which accounts for the signs).
It is convenient to rescale these to: S := {q−12,−q−6,−1, q2} which of course does
not affect the projective image. These eigenvalues are distinct for q = eπi/ℓ with
ℓ ≥ 18 and so it follows from Lemma 2.3 that B3 acts irreducibly on Hom(V, V ⊗3)
and the projective order of the image of σ1 is 2ℓ if ℓ is odd and ℓ if ℓ is even. Next
we claim that the image of B3 is primitive: by Theorem 2.2(b) is is enough to
checks that S is not of the form {±r,±s} or χ{1, ω, ω2} ∪ {α} with ω a 3rd root
of unity. Since q = eπi/ℓ with ℓ ≥ 18 we find that 1 6∈ S so S 6= {±r,±s}. For
ℓ ≥ 18 none of −1/q2, q−12/q2 or −q−6/q2 is equal to 1 so we need only check that
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{−1, q−12,−q−6} 6= χ{1, ω, ω2} for any χ. Assuming to the contrary we must have
q−18 = 1 but this implies q2 is a 9th root of unity which contradicts ℓ ≥ 18. Now
it follows from Theorem 2.2(a) and (d)(iii)] that the image of B3 is infinite unless
ℓ = 24. For the case ℓ = 24 one must work a little harder: in this case there are,
up to equivalence, two irreducible 4 dimensional representations of B3 with these
eigenvalues, explicitly described in [19, Prop. 2.6]. For example for one of the two
choices the image of σ1 is

A :=











q−12 q8+q4+1
q6 − q8+q4+1

q14 −1

0 q2 − q4−1
q10 −1

0 0 −q−6 −1
0 0 0 −1











while the image of σ2 is:

B :=









−1 0 0 0
q−6 −q−6 0 0
q6 − (q4 + 1) q2 q2 0

−1 q8+q4+1
q8 − q8+q4+1

q12 q−12









Substituting q = eπi/24 one finds that the matrix C := AB−1 has infinite order.
Indeed by [18, Lemma 5.1] one need only verify that Cj is not proportional to I
for 1 ≤ j ≤ 24.

Next we consider the case 3 ∤ ℓ. In this case C(g2, q, ℓ) is trivial for ℓ = 7 and
is pointed of rank 2 for ℓ = 8. For ℓ ≥ 10 we again find that Hom(V, V ⊗3) is
a 4-dimensional irreducible B3-representation as we have the same decomposition
of V ⊗2 and eigenvalues as above. The case ℓ = 10 (rank 4) has been studied:
C(g2, q, 10) has the Fibonacci category as a (modular) subcategory (see [16, Theo-
rem 3.4]) and hence has infinite braid group image. For ℓ ≥ 11, Theorem 2.2(d) is
again sufficient to conclude the image of B3 is infinite except for the case ℓ = 20.
We may use the same matrices A, B and C described above and explicitly check
that C has infinite order for q = eπi/20. �

4.2. Lie type F4.

Theorem 4.2. The non-trivial categories C(f4, q, ℓ) do not have property F.

Proof. Now let g = f4, and V be the simple object in C(f4, q, ℓ) analogous to the
(26-dimensional) vector representation of f4 labeled by λ1. Again there are two
cases 2 | ℓ and 2 ∤ ℓ.

First, suppose ℓ is even. Then if 22 ≤ ℓ, dim Hom(V, V ⊗3) = 5 and the eigenval-
ues of the image of σ1 are (up to an overall scale factor): {q−24, q−12, q2,−1,−q−6}.
Notice that these eigenvalues are distinct unless ℓ = 24 so that Hom(V, V ⊗3) is
an irreducible B3-representation if ℓ 6= 24. Moreover, the image is primitive (see
Theorem 2.2(b)) so Theorem 2.2(d)(iv) implies that the image of B3 is infinite for
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ℓ = 22 or 26 ≤ ℓ as the projective order of the image of σ1 is ℓ in these cases. In
the case ℓ = 24 we have repeated eigenvalues, hence either the representation is
reducible (or has infinite image by Theorem 2.2(a)). Thus we must consider the
ℓ = 24 case separately. In this case C(f4, q, 24) has rank 9: the simple objects are
labeled by

{0, λ1, 2λ1, 3λ1, λ2, λ3, λ4, λ1 + λ2, λ1 + λ4}.

If we let U be the simple object labeled by λ4 we compute that U⊗2 decomposes
as 1 ⊕ V2λ1

⊕ U ⊕ Vλ3
. To see this one compute the second tensor power of

the fundamental 52-dimensional representation with highest weight λ4 and then
discards the object labeled by 2λ4 as this lies on the upper hyperplane of the Weyl
alcove for ℓ = 24. That is, 〈2λ4 +ρ, ϑ0〉 = 24. One Then computes the eigenvalues
of the action of σ1 on Hom(U, U⊗3) to be: {1, q26,−q18,−q36}. For q = eπi/24 these
are distinct so that Hom(U, U⊗3) is an irreducible 4-dimensional B3-representation.
However, the projective order of the image of σ1 is 24 so we must resort to explicit
computations as in the g2 situation above. We again find that the image of σ1σ

−1
2

has infinite image.
Next assume that ℓ is odd. We have dim Hom(V, V ⊗3) = 5 when 15 ≤ ℓ, and

the projective order of the image of σ1 is 2ℓ so the image of B3 is again always
infinite by Theorem 2.2(d).

�

4.3. Lie types E6, E7 and E8.

Theorem 4.3. The non-trivial categories C(eN , q, ℓ) do not have property F unless
(N, ℓ) ∈ {(6, 13), (7, 19), (8, 32)}.

Proof. The braid group representations for UqeN with q generic have been studied
at length in [24], and the results there can be used to give a uniform proof of the
infinitude of the braid group image for N = 6, 7 and 8. In this case we take V to be
the simple object analogous to the vector representation of eN . The highest weight
of V corresponds to the node in the Dynkin diagram of EN furthest from the triple
point (for N = 6 this is ambiguous but we may pick either as they correspond to
dual objects). We will call this highest weight λ1 (although this does not coincide
with [3] in some cases).

The B3 representation space we consider is Hom(Vλ1+λN
, V ⊗3). Note that Vλ1+λN

appears in what Wenzl calls V ⊗3
new in [24]. This space is 3-dimensional provided

λ1 + λN ∈ Cℓ(eN). For N = 6 this is satisfied for ℓ ≥ 14, for N = 7 we need
ℓ ≥ 21 and for N = 8 we must have ℓ ≥ 34. Let us say that ℓ is in the stable
range if ℓ is large enough to ensure λ1 + λN ∈ Cℓ(eN). We will consider the
cases corresponding to the pairs (N, ℓ) ∈ {(7, 20), (8, 33)} separately. Provided
ℓ is in the stable range the braiding eigenvalues on H := Hom(Vλ1+λN

, V ⊗3) are
(up to an overall scale factor): {q,−q−1, q3−2N} (see [24]) where N = 6, 7 or 8. In
fact, it is observed in [24, Remark 5.10] that this 3-dimensional representation H is
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equivalent to the 3-dimensional representation of B3 obtained from BMW-algebras
(see [22, 20]) specialized at r = q2N−3. The irreducibility of this representation
at roots of unity is analyzed in [22]. In particular [22, Theorem 6.4(a)] implies
that as long as 2N − 3 < ℓ− 2 the corresponding 3-dimensional B3 representation
is irreducible. This is clearly satisfied for ℓ in the stable range. An alternative
approach to showing that H is irreducible is to follow the proof in [24, Section 4],
which is a matter of checking that the argument there is valid for the root of unity
case provided ℓ is in the stable range.

Having shown that H is irreducible it is now a routine application of Theorem
2.2(c)(i) and (d)(ii) to see that the image of B3 on H is primitive and hence infinite
as the projective order of the image of σ1 is at least 8. This proves the statement
for all but the two cases (N, ℓ) ∈ {(7, 20), (8, 33)}.

One finds that C(e7, q, 20) has rank 6 and is a product of two well-known cat-
egories: the Fibonacci category (rank 2) and the Ising category (rank 3). The
former has infinite braid group image (although the latter does not!) so we may
deduce the infinitude of the braid group image for (N, ℓ) = (7, 20).

The rank 5 category C(e8, q, 33) is conjugate to C(f4, q, 22) and can also be real-
ized as a modular subcategory of C(sl2, q, 11). We have already seen that C(f4, q, 22)
has infinite braid group image, so we have shown that the case (N, ℓ) = (8, 33) has
infinite braid group image finishing the proof.

�

5. Conclusions

With these results the verification of the “non-weakly-integral implies no prop-
erty F” direction of Conjecture 1.1 for quantum group categories is essentially
complete. Although a classification of weakly integral categories of classical Lie
type has not appeared (to our knowledge), it is essentially known to experts. In
type A it is known that C(slN , q, ℓ) is weakly integral for ℓ ∈ {N, N + 1, 4, 6} and
for type C we have C(sp4, q, 10) weakly integral. There are two infinite families of
weakly integral categories coming from types B and D: C(soN , q, 2N) with N odd
and C(soM , q, M) with M even (see [13]). In addition C(soN , q, 2N − 2) with N
odd and C(soM , q, M − 1) with M even are weakly integral but are always rank
3 and 4 respectively and only give rise to finitely many inequivalent categories.
This is expected to be a complete list (except possibly for some low-rank coinci-
dences). The results of [9, 8, 11] show that in all but these cases property F fails
for C(g, q, ℓ) of classical Lie type.

We conclude with two “plausibility arguments” for the general conjecture. Firstly,
if G is a primitive linear group of degree m then the projective order of any element
of G is bounded by a (G-independent) function of m. Indeed, see [11, Corollary 4.3]
for a result of this type. Now it is known that for a (unitary) modular category,
the FPdim(Xj) lie in the cyclotomic field Q(θ1, . . . , θk) generated by the twists



10 ERIC C. ROWELL

(see [14]). So if FPdim(Xj) is far from being integral, that is [Q(FPdim(Xj) : Q]
is large, then the order of some θi is large. Since the eigenvalues of the image of
σi are square-roots of products of twists it follows that the projective order of the
image of σ1 in some B3 representation is large. On the other hand the degrees of
the irreducible representations of B3 associated to an object X are bounded by
FPdim(X)2 (the maximum number of simple subobjects of X⊗2) and is typically
much smaller. Thus it is reasonable to expect that non-weakly-integral categories
give rise to infinite braid group images.

The main result of [6] is that group-theoretical braided fusion categories have
property F. Here C is group-theoretical if the Drinfeld center of C is equivalent
to Rep(DωG) for some finite group G and cocycle ω. A group-theoretical fusion
category is always integral, but not conversely. This notion has been generalized
to weakly group-theoretical fusion categories (see [5]). Roughly speaking, weakly
group-theoretical fusion categories are those that can be defined in terms of finite
group data. Weakly group-theoretical fusion categories are always weakly inte-
gral, and no counterexample to the converse is currently known. If indeed weak
integrality and weak group-theoreticity are equivalent notions, one need only show
that weakly group-theoretical braided fusion categories have property F to prove
the other direction of Conjecture 1.1.
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