Applied/Numerical Analysis Qualifying Exam

January 12, 2017

Cover Sheet – Applied Analysis Part

Policy on misprints: The qualifying exam committee tries to proofread exams as carefully as possible. Nevertheless, the exam may contain a few misprints. If you are convinced a problem has been stated incorrectly, indicate your interpretation in writing your answer. In such cases, do *not* interpret the problem so that it becomes trivial.

Name_

Combined Applied Analysis/Numerical Analysis Qualifier Applied Analysis Part January 12, 2017

Instructions: Do any 3 of the 4 problems in this part of the exam. Show all of your work clearly. Please indicate which of the 4 problems you are skipping.

Problem 1. Let $I(\lambda) := \int_0^\infty e^{-t} (\lambda + t)^{-1} dt$.

- (a) State Watson's lemma.
- (b) Find an asymptotic estimate for $I(\lambda)$ as $\lambda \to \infty$.

Problem 2. Let $L[u] = -\frac{d^2u}{dx^2}, 0 \le x \le 1$. Take $\mathcal{D}(L) := \{u \in L^2[0,1] \mid u'' \in L^2[0,1], u(0) = 0, u'(1) = 3u(1)\}.$

to be the domain of L.

- (a) Show that L is self adjoint on $\mathcal{D}(L)$.
- (b) Find the Green's function for the problem $L[u] = f, u \in \mathcal{D}(L)$.
- (c) Let $Kf(x) := \int_0^1 G(x, y) f(y) dy$. Show that K is a self-adjoint Hilbert-Schmidt operator, and that 0 is not an eigenvalue of K.
- (d) Use (b) and the spectral theory of compact operators to show the orthonormal set of eigenfunctions for L form a complete set in $L^2[0, 1]$.

Problem 3. Let f be a piecewise smooth, continuous 2π periodic function having a piecewise continuous derivative, f'. Suppose that f has the Fourier series $f(x) = \sum_{n=0}^{\infty} a_n \sin(nx) + b_n \cos(nx)$.

(a) Show that it is permissible to interchange sum and derivative to obtain the the Fourier series for f'; that is,

$$f'(x) = \frac{d}{dx} \left\{ \sum_{n=0}^{\infty} a_n \sin(nx) + b_n \cos(nx) \right\} = \sum_{n=1}^{\infty} n(a_n \cos(nx) - b_n \sin(nx)).$$

(b) Use this result to calculate the Fourier series for the 2π -periodic extension of $f(x) = \frac{\pi x^2 - \pi^2 x}{8}$, $-\pi \le x \le \pi$, given that $\sum_{n=1}^{\infty} \frac{\sin((2n-1)x)}{2n-1} = \frac{\pi}{4} \operatorname{sign}(x)$ on $0 < |x| < \pi$. (c) Find the $\sum_{n=1}^{\infty} \frac{1}{(2n-1)^6}$

Problem 4. Do the following.

- (a) State the Projection Theorem.
- (b) State and prove the Fredholm Alternative.
- (c) Let $k(x, y) = x^3 y$, $Ku(x) = \int_0^1 k(x, y)u(y)dy$, and $Lu = u \lambda Ku$. (i) Briefly explain why L has closed range.
 - (ii) Determine the values of λ for which Lu = f has a solution for all f.
 - (iii) Solve Lu = f for these values of λ .

Applied/Numerical Analysis Qualifying Exam

January 12, 2017

Cover Sheet – Numerical Analysis Part

Policy on misprints: The qualifying exam committee tries to proofread exams as carefully as possible. Nevertheless, the exam may contain a few misprints. If you are convinced a problem has been stated incorrectly, indicate your interpretation in writing your answer. In such cases, do *not* interpret the problem so that it becomes trivial.

Name_

APPLIED MATHEMATICS/NUMERICAL ANALYSIS QUALIFIER

January 12, 2017

Numerical Analysis part, 2 hours

Problem 1. Let K be a non-degenerate triangle in \mathbb{R}^2 . Let a_1, a_2, a_3 be the three vertices of K. Let $a_{ij} = a_{ji}$ denote the midpoint of the segment $(a_i, a_j), i, j \in \{1, 2, 3\}$. Let \mathbb{P}^1 be the set of linear functions $p(x_1, x_2)$ over K and $\Sigma = \{\sigma_1, \sigma_2, \sigma_3\}$ be the linear forms (or degrees of freedom) on \mathbb{P}^1 defined as

$$\sigma_{ij}(p) = p(a_{ij}), \ i, j = 1, 2, 3, \ i \neq j$$

- (a) Show that the degrees of freedom $\{\sigma_{12}, \sigma_{23}, \sigma_{31}\}$ are unisolvent.
- (b) Compute the "nodal" basis of \mathbb{P}^1 which corresponds to $\Sigma = \{\sigma_{12}, \sigma_{23}, \sigma_{31}\}.$
- (c) Let \mathcal{T}_h be a triangulation of the domain Ω with polygonal boundary and let the finite dimensional space \mathbb{V} consist of functions whose restrictions to each K are the functions from the FE $(K, \mathbb{P}^1, \Sigma)$. Show that in general these functions are NOT in $H^1(\Omega)$.
- (d) If M_K is the element "mass" matrix, evaluate its entries m_{ij} .

Problem 2. (a) Let $\Omega = (0, 1)$. Assume that $u \in H^1(\Omega)$ and let $x_0 \in \overline{\Omega}$. Prove that

(2.1)
$$\|u\|_{L_2(\Omega)}^2 \le C_1 \Big(u^2(x_0) + \|u'\|_{L_2(\Omega)}^2 \Big)$$

with a constant C_1 independent of x_0 .

(b) Consider the fourth-order boundary value problem

$$u''' = f$$
 in Ω , $u(0) = 0$, $u''(0) = 0$, $u''(1) + u'(1) = 1$, $u'''(1) = 0$.

Derive a weak formulation of this problem assuming that $f \in L_2(\Omega)$.

- (c) Show that the weak formulation that you derived in part (b) above has a unique solution.
- (d) Using Hermite cubic finite element spaces (i.e., piecewise cubic elements lying in $C^{1}(\Omega)$) derive a finite element method for the problem in part (b). Be sure to carefully define your finite element space.
- (e) Show that the finite element method you derived has a unique solution u_h and derive an optimalorder error estimate for $u - u_h$ in the $H^2(\Omega)$ -norm. *Hint:* A correct proof will involve using an interpolation error bound. You may state and use such a bound without proving it.

Problem 3. Let u(x,t) be a smooth solution satisfying

$$\partial_t u + \beta \partial_x u = 0, \quad x \in \Omega := (0, 1), \quad t > 0 \quad \text{and} \quad u(0, x) = \phi(x), \quad x \in \Omega$$

where $\beta \in \mathbb{R}$ and ϕ is a given smooth function. In addition, we assume that u(x,t) satisfies the periodic boundary condition u(0,t) = u(1,t), t > 0. Let $\mathbb{V} = \{v \in H^1(\Omega) : v(0) = v(1)\}$.

(a) Let $N \in \mathbb{N} \setminus \{0\}$, set $h := \frac{1}{N+1}$ and consider the uniform mesh \mathcal{T}_h composed of the cells $[x_i, x_{i+1}]$, i = 0, ..., N. Let $P(\mathcal{T}_h)$ be the finite element space composed of continuous piecewise linear functions on \mathcal{T}_h . Given $\phi_h \in \mathbb{V} \cap \mathcal{P}(\mathcal{T}_h)$ an approximation of ϕ , consider the semi-discrete method: For t > 0, find $u_h(t, .) \in \mathbb{V} \cap \mathcal{P}(\mathcal{T}_h)$ such that $u_h(0, x) = \phi_h(x)$ and for every $v_h \in \mathcal{P}(\mathcal{T}_h)$ with $v_h(0) = v_h(1)$ there holds

$$\frac{h}{2} \sum_{i=0}^{N} \left(\partial_t u_h(t, x_{i+1}) v_h(x_{i+1}) + \partial_t u_h(t, x_i) v_h(x_i) \right) + \beta \int_{\Omega} \partial_x u_h(t, x) v_h(x) \, dx = 0.$$

Compute the time dependent matrix system.

Note: we assume that as a function of $t, u_h(t) \to \mathbb{V} \cap \mathcal{P}(\mathcal{T}_h)$ is smooth.

(b) Show that the Finite Element approximation $u_h(t)$ satisfies

$$\frac{d}{dt}\sum_{i=0}^{N}u_h(t,x_i)^2 = 0.$$

(c) Show that

$$c^{-1} \int_{\Omega} u_h^2(t,x) \, dx \le h \sum_{i=0}^N u_h(t,x_i)^2 \le c \int_{\Omega} u_h^2(t,x) \, dx$$

and deduce the estimate

$$\int_{\Omega} u_h^2(t,x) \, dx \le C \int_{\Omega} \phi_h^2(0,x) \, dx.$$

Here c and C are constants independent of h.