Applied/Numerical Analysis Qualifying Exam

January 12, 2017

Cover Sheet - Applied Analysis Part

Policy on misprints: The qualifying exam committee tries to proofread exams as carefully as possible. Nevertheless, the exam may contain a few misprints. If you are convinced a problem has been stated incorrectly, indicate your interpretation in writing your answer. In such cases, do not interpret the problem so that it becomes trivial.

Name

Combined Applied Analysis/Numerical Analysis Qualifier
 Applied Analysis Part
 January 12, 2017

Instructions: Do any 3 of the 4 problems in this part of the exam. Show all of your work clearly. Please indicate which of the 4 problems you are skipping.

Problem 1. Let $I(\lambda):=\int_{0}^{\infty} e^{-t}(\lambda+t)^{-1} d t$.
(a) State Watson's lemma.
(b) Find an asymptotic estimate for $I(\lambda)$ as $\lambda \rightarrow \infty$.

Problem 2. Let $L[u]=-\frac{d^{2} u}{d x^{2}}, 0 \leq x \leq 1$. Take

$$
\mathcal{D}(L):=\left\{u \in L^{2}[0,1] \mid u^{\prime \prime} \in L^{2}[0,1], u(0)=0, u^{\prime}(1)=3 u(1)\right\} .
$$

to be the domain of L.
(a) Show that L is self adjoint on $\mathcal{D}(L)$.
(b) Find the Green's function for the problem $L[u]=f, u \in \mathcal{D}(L)$.
(c) Let $K f(x):=\int_{0}^{1} G(x, y) f(y) d y$. Show that K is a self-adjoint Hilbert-Schmidt operator, and that 0 is not an eigenvalue of K.
(d) Use (b) and the spectral theory of compact operators to show the orthonormal set of eigenfunctions for L form a complete set in $L^{2}[0,1]$.

Problem 3. Let f be a piecewise smooth, continuous 2π periodic function having a piecewise continuous derivative, f^{\prime}. Suppose that f has the Fourier series $f(x)=\sum_{n=0}^{\infty} a_{n} \sin (n x)+b_{n} \cos (n x)$.
(a) Show that it is permissible to interchange sum and derivative to obtain the the Fourier series for f^{\prime}; that is,

$$
\left.f^{\prime}(x)=\frac{d}{d x}\left\{\sum_{n=0}^{\infty} a_{n} \sin (n x)+b_{n} \cos (n x)\right)\right\}=\sum_{n=1}^{\infty} n\left(a_{n} \cos (n x)-b_{n} \sin (n x)\right) .
$$

(b) Use this result to calculate the Fourier series for the 2π-periodic extension of $f(x)=\frac{\pi x^{2}-\pi^{2} x}{8}$, $-\pi \leq x \leq \pi$, given that $\sum_{n=1}^{\infty} \frac{\sin ((2 n-1) x)}{2 n-1}=\frac{\pi}{4} \operatorname{sign}(x)$ on $0<|x|<\pi$.
(c) Find the $\sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{6}}$

Problem 4. Do the following.
(a) State the Projection Theorem.
(b) State and prove the Fredholm Alternative.
(c) Let $k(x, y)=x^{3} y, K u(x)=\int_{0}^{1} k(x, y) u(y) d y$, and $L u=u-\lambda K u$.
(i) Briefly explain why L has closed range.
(ii) Determine the values of λ for which $L u=f$ has a solution for all f.
(iii) Solve $L u=f$ for these values of λ.

Applied/Numerical Analysis Qualifying Exam

January 12, 2017

Cover Sheet - Numerical Analysis Part

Policy on misprints: The qualifying exam committee tries to proofread exams as carefully as possible. Nevertheless, the exam may contain a few misprints. If you are convinced a problem has been stated incorrectly, indicate your interpretation in writing your answer. In such cases, do not interpret the problem so that it becomes trivial.

Name

APPLIED MATHEMATICS/NUMERICAL ANALYSIS QUALIFIER

January 12, 2017

Numerical Analysis part, 2 hours

Problem 1. Let K be a non-degenerate triangle in \mathbb{R}^{2}. Let a_{1}, a_{2}, a_{3} be the three vertices of K. Let $a_{i j}=a_{j i}$ denote the midpoint of the segment $\left(a_{i}, a_{j}\right), i, j \in\{1,2,3\}$. Let \mathbb{P}^{1} be the set of linear functions $p\left(x_{1}, x_{2}\right)$ over K and $\Sigma=\left\{\sigma_{1}, \sigma_{2}, \sigma_{3}\right\}$ be the linear forms (or degrees of freedom) on \mathbb{P}^{1} defined as

$$
\sigma_{i j}(p)=p\left(a_{i j}\right), i, j=1,2,3, i \neq j .
$$

(a) Show that the degrees of freedom $\left\{\sigma_{12}, \sigma_{23}, \sigma_{31}\right\}$ are unisolvent.
(b) Compute the "nodal" basis of \mathbb{P}^{1} which corresponds to $\Sigma=\left\{\sigma_{12}, \sigma_{23}, \sigma_{31}\right\}$.
(c) Let \mathcal{T}_{h} be a triangulation of the domain Ω with polygonal boundary and let the finite dimensional space \mathbb{V} consist of functions whose restrictions to each K are the functions from the $\mathrm{FE}\left(K, \mathbb{P}^{1}, \Sigma\right)$. Show that in general these functions are NOT in $H^{1}(\Omega)$.
(d) If M_{K} is the element "mass" matrix, evaluate its entries $m_{i j}$.

Problem 2. (a) Let $\Omega=(0,1)$. Assume that $u \in H^{1}(\Omega)$ and let $x_{0} \in \bar{\Omega}$. Prove that

$$
\begin{equation*}
\|u\|_{L_{2}(\Omega)}^{2} \leq C_{1}\left(u^{2}\left(x_{0}\right)+\left\|u^{\prime}\right\|_{L_{2}(\Omega)}^{2}\right) \tag{2.1}
\end{equation*}
$$

with a constant C_{1} independent of x_{0}.
(b) Consider the fourth-order boundary value problem

$$
u^{\prime \prime \prime \prime}=f \text { in } \Omega, u(0)=0, u^{\prime \prime}(0)=0, u^{\prime \prime}(1)+u^{\prime}(1)=1, u^{\prime \prime \prime}(1)=0 .
$$

Derive a weak formulation of this problem assuming that $f \in L_{2}(\Omega)$.
(c) Show that the weak formulation that you derived in part (b) above has a unique solution.
(d) Using Hermite cubic finite element spaces (i.e., piecewise cubic elements lying in $C^{1}(\Omega)$) derive a finite element method for the problem in part (b). Be sure to carefully define your finite element space.
(e) Show that the finite element method you derived has a unique solution u_{h} and derive an optimalorder error estimate for $u-u_{h}$ in the $H^{2}(\Omega)$-norm. Hint: A correct proof will involve using an interpolation error bound. You may state and use such a bound without proving it.

Problem 3. Let $u(x, t)$ be a smooth solution satisfying

$$
\partial_{t} u+\beta \partial_{x} u=0, \quad x \in \Omega:=(0,1), \quad t>0 \quad \text { and } \quad u(0, x)=\phi(x), \quad x \in \Omega
$$

where $\beta \in \mathbb{R}$ and ϕ is a given smooth function. In addition, we assume that $u(x, t)$ satisfies the periodic boundary condition $u(0, t)=u(1, t), t>0$. Let $\mathbb{V}=\left\{v \in H^{1}(\Omega): v(0)=v(1)\right\}$.
(a) Let $N \in \mathbb{N} \backslash\{0\}$, set $h:=\frac{1}{N+1}$ and consider the uniform mesh \mathcal{T}_{h} composed of the cells $\left[x_{i}, x_{i+1}\right]$, $i=0, \ldots, N$. Let $P\left(\mathcal{T}_{h}\right)$ be the finite element space composed of continuous piecewise linear functions on \mathcal{T}_{h}. Given $\phi_{h} \in \mathbb{V} \cap \mathcal{P}\left(\mathcal{T}_{h}\right)$ an approximation of ϕ, consider the semi-discrete method: For $t>0$, find $u_{h}(t,.) \in \mathbb{V} \cap \mathcal{P}\left(\mathcal{T}_{h}\right)$ such that $u_{h}(0, x)=\phi_{h}(x)$ and for every $v_{h} \in \mathcal{P}\left(\mathcal{T}_{h}\right)$ with $v_{h}(0)=v_{h}(1)$ there holds

$$
\frac{h}{2} \sum_{i=0}^{N}\left(\partial_{t} u_{h}\left(t, x_{i+1}\right) v_{h}\left(x_{i+1}\right)+\partial_{t} u_{h}\left(t, x_{i}\right) v_{h}\left(x_{i}\right)\right)+\beta \int_{\Omega} \partial_{x} u_{h}(t, x) v_{h}(x) d x=0 .
$$

Compute the time dependent matrix system.
Note: we assume that as a function of $t, u_{h}(t) \rightarrow \mathbb{V} \cap \mathcal{P}\left(\mathcal{T}_{h}\right)$ is smooth.
(b) Show that the Finite Element approximation $u_{h}(t)$ satisfies

$$
\frac{d}{d t} \sum_{i=0}^{N} u_{h}\left(t, x_{i}\right)^{2}=0
$$

(c) Show that

$$
c^{-1} \int_{\Omega} u_{h}^{2}(t, x) d x \leq h \sum_{i=0}^{N} u_{h}\left(t, x_{i}\right)^{2} \leq c \int_{\Omega} u_{h}^{2}(t, x) d x
$$

and deduce the estimate

$$
\int_{\Omega} u_{h}^{2}(t, x) d x \leq C \int_{\Omega} \phi_{h}^{2}(0, x) d x
$$

Here c and C are constants independent of h.

