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Combined Applied Analysis/Numerical Analysis Qualifier
Applied Analysis Part

January 12, 2017

Instructions: Do any 3 of the 4 problems in this part of the exam. Show all of your work clearly.
Please indicate which of the 4 problems you are skipping.

Problem 1. Let I(λ) :=
∫∞

0 e−t(λ+ t)−1dt.

(a) State Watson’s lemma.
(b) Find an asymptotic estimate for I(λ) as λ→∞.

Problem 2. Let L[u] = −d2u
dx2

, 0 ≤ x ≤ 1. Take

D(L) := {u ∈ L2[0, 1] |u′′ ∈ L2[0, 1], u(0) = 0, u′(1) = 3u(1)}.
to be the domain of L.

(a) Show that L is self adjoint on D(L).
(b) Find the Green’s function for the problem L[u] = f , u ∈ D(L).

(c) Let Kf(x) :=
∫ 1

0 G(x, y)f(y)dy. Show that K is a self-adjoint Hilbert-Schmidt operator, and
that 0 is not an eigenvalue of K.

(d) Use (b) and the spectral theory of compact operators to show the orthonormal set of eigen-
functions for L form a complete set in L2[0, 1].

Problem 3. Let f be a piecewise smooth, continuous 2π periodic function having a piecewise contin-
uous derivative, f ′. Suppose that f has the Fourier series f(x) =

∑∞
n=0 an sin(nx) + bn cos(nx).

(a) Show that it is permissible to interchange sum and derivative to obtain the the Fourier series
for f ′; that is,

f ′(x) =
d

dx

{ ∞∑
n=0

an sin(nx) + bn cos(nx))

}
=
∞∑
n=1

n(an cos(nx)− bn sin(nx)).

(b) Use this result to calculate the Fourier series for the 2π-periodic extension of f(x) = πx2−π2x
8 ,

−π ≤ x ≤ π, given that
∑∞

n=1
sin((2n−1)x)

2n−1 = π
4 sign(x) on 0 < |x| < π.

(c) Find the
∑∞

n=1
1

(2n−1)6

Problem 4. Do the following.

(a) State the Projection Theorem.
(b) State and prove the Fredholm Alternative.

(c) Let k(x, y) = x3y, Ku(x) =
∫ 1

0 k(x, y)u(y)dy, and Lu = u− λKu.
(i) Briefly explain why L has closed range.
(ii) Determine the values of λ for which Lu = f has a solution for all f .
(iii) Solve Lu = f for these values of λ.
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Numerical Analysis part, 2 hours

Problem 1. Let K be a non-degenerate triangle in R2. Let a1, a2, a3 be the three vertices of K.
Let aij = aji denote the midpoint of the segment (ai, aj), i, j ∈ {1, 2, 3}. Let P1 be the set of linear
functions p(x1, x2) over K and Σ = {σ1, σ2, σ3} be the linear forms (or degrees of freedom) on P1

defined as

σij(p) = p(aij), i, j = 1, 2, 3, i 6= j.

(a) Show that the degrees of freedom {σ12, σ23, σ31} are unisolvent.
(b) Compute the “nodal” basis of P1 which corresponds to Σ = {σ12, σ23, σ31}.
(c) Let Th be a triangulation of the domain Ω with polygonal boundary and let the finite dimensional

space V consist of functions whose restrictions to each K are the functions from the FE (K,P1,Σ).
Show that in general these functions are NOT in H1(Ω).

(d) If MK is the element “mass” matrix, evaluate its entries mij .

Problem 2. (a) Let Ω = (0, 1). Assume that u ∈ H1(Ω) and let x0 ∈ Ω. Prove that

(2.1) ‖u‖2L2(Ω) ≤ C1

(
u2(x0) + ‖u′‖2L2(Ω)

)
with a constant C1 independent of x0.

(b) Consider the fourth-order boundary value problem

u′′′′ = f in Ω, u(0) = 0, u′′(0) = 0, u′′(1) + u′(1) = 1, u′′′(1) = 0.

Derive a weak formulation of this problem assuming that f ∈ L2(Ω).
(c) Show that the weak formulation that you derived in part (b) above has a unique solution.
(d) Using Hermite cubic finite element spaces (i.e., piecewise cubic elements lying in C1(Ω)) derive a

finite element method for the problem in part (b). Be sure to carefully define your finite element
space.

(e) Show that the finite element method you derived has a unique solution uh and derive an optimal-
order error estimate for u − uh in the H2(Ω)-norm. Hint: A correct proof will involve using an
interpolation error bound. You may state and use such a bound without proving it.

Problem 3. Let u(x, t) be a smooth solution satisfying

∂tu+ β∂xu = 0, x ∈ Ω := (0, 1), t > 0 and u(0, x) = φ(x), x ∈ Ω

where β ∈ R and φ is a given smooth function. In addition, we assume that u(x, t) satisfies the periodic
boundary condition u(0, t) = u(1, t), t > 0. Let V = {v ∈ H1(Ω) : v(0) = v(1)}.

(a) Let N ∈ N\{0}, set h := 1
N+1 and consider the uniform mesh Th composed of the cells [xi, xi+1],

i = 0, ..., N . Let P (Th) be the finite element space composed of continuous piecewise linear functions
on Th. Given φh ∈ V∩P(Th) an approximation of φ, consider the semi-discrete method: For t > 0,
find uh(t, .) ∈ V ∩ P(Th) such that uh(0, x) = φh(x) and for every vh ∈ P(Th) with vh(0) = vh(1)
there holds

h

2

N∑
i=0

(∂tuh(t, xi+1)vh(xi+1) + ∂tuh(t, xi)vh(xi)) + β

∫
Ω
∂xuh(t, x)vh(x) dx = 0.

Compute the time dependent matrix system.
Note: we assume that as a function of t, uh(t)→ V ∩ P(Th) is smooth.
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(b) Show that the Finite Element approximation uh(t) satisfies

d

dt

N∑
i=0

uh(t, xi)
2 = 0.

(c) Show that

c−1

∫
Ω
u2
h(t, x) dx ≤ h

N∑
i=0

uh(t, xi)
2 ≤ c

∫
Ω
u2
h(t, x) dx

and deduce the estimate ∫
Ω
u2
h(t, x) dx ≤ C

∫
Ω
φ2
h(0, x) dx.

Here c and C are constants independent of h.
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