\mathbb{D} denotes the unit disc $B(0,1)$.

Problem 1: Let $f(z)=\frac{z+1}{z^{2}(z-i)}$. Give all Laurent series expansions centered at i that converge to f in their domain of convergence.

Problem 2: Using residue calculus, compute

$$
\int_{0}^{\infty} \frac{d x}{\left(x^{2}+1\right) x^{1 / 3}}
$$

Problem 3: Let $\Omega=\{1<|z-2|<3\}$.
a) Show that the function element $\left(\mathbb{D}, f(z)=\sum_{n=1}^{\infty} z^{n} / n\right)$ admits unrestricted analytic continuation in Ω.
b) Show that there does not exist an analytic function g in Ω with $g=f$ on \mathbb{D}.

Problem 4: Let f be analytic on \mathbb{D}. Suppose there is an annulus $A=\{r<|z|<1\}$ such that the restriction of f to A is one-to-one. Show that f is one-to-one on \mathbb{D}.

Problem 5: Let u be a positive harmonic function on the crescent between the circles $\{|z-i|=1\}$ and $\{|z-2 i|=2\}$. Assume that $u(z) \rightarrow 0$ as $z \rightarrow 0$ on the circle $\{|z-(3 / 2) i|=(3 / 2)\}$. Show that then $u(z) \rightarrow 0$ as $z \rightarrow 0$ on any circle $\{|z-a i|=a\}$, $1<a<2$.

Problem 6: Construct an entire function that has simple zeros on the positive real axis at the points $\sqrt{n}, n=1,2, \cdots$, and zeros of order two on the positive imaginary axis at the points $i \sqrt{n}, n=1,2, \cdots$, and no other zeros.

Problem 7: Given is a point $c \in \mathbb{D}$ and a radius $r, 0<r<(1-|c|)$. Denote by K the compact set $\overline{\mathbb{D}} \backslash\{|z-c|<r\}$. By considering $\int_{|z|=1}(\bar{z}-f(z)) d z-\int_{|z-c|=r}(\bar{z}-$ $f(z)) d z$, show that $\max _{z \in K}|\bar{z}-f(z)| \geq(1-r)$ for every rational function f with poles off K.

Problem 8: Let f be analytic and bounded in \mathbb{D}, let $\left\{a_{k}\right\}_{k=1}^{\infty}$ be a sequence of (distinct) points in \mathbb{D} such that $\sum_{k=1}^{\infty}\left(1-\left|a_{k}\right|\right)=\infty$. Show that if $f\left(a_{k}\right)=0$ for all k, then $f \equiv 0$.

Problem 9: Let \mathcal{F} be the family of analytic functions on \mathbb{D} that are one-to-one and omit zero. Show that \mathcal{F} is a normal family in $C\left(\mathbb{D}, \mathbb{C}_{\infty}\right)$.

Problem 10: State the Hadamard Factorization Theorem and explain why it is a "factorization theorem".

