Complex Analysis Qualifying Examination

January 2024

In this problem set, \mathbb{D} is the open unit disk centered at zero.

1. (a) State Harnack's Inequality; Riemann Mapping Theorem; Great Picard Theorem on essential singularities.
(b) Sketch the proof of one of these theorems.
2. Show that

$$
\int_{0}^{\infty} \frac{\cos \sqrt{x}}{\sqrt{x}(1+x)} d x=\frac{\pi}{e}
$$

3. For each n, find the imaginary part of the integral $\int_{\gamma} f(z) d z$ where

$$
f(z)=\frac{e^{z}}{z(z+1)}
$$

and γ is a spiral given by $\gamma(t)=e^{-t+i t}, t \in[0,2 \pi n]$.
4. An entire function f satisfies $|f(z)| \leq 1+\sqrt{|z|}$. Prove that it is constant.
5. The non-constant function f is analytic in a neighborhood of the unit disc. It does not take purely imaginary values on the unit circle. Prove that on \mathbb{D}, we have $f=e^{g}$, where g is analytic in \mathbb{D}.
6. The function f is meromorphic and non-constant on a connected neighborhood of $\overline{\mathbb{D}}$, with poles a_{1}, \ldots, a_{n} and zeros b_{1}, \ldots, b_{m} (counted with mulitplicities), all located strictly inside \mathbb{D}.

Meromorphic functions f_{k} converge to f as $k \rightarrow \infty$, uniformly on compact subsets of $\mathbb{D} \backslash$ $\left\{a_{1}, \ldots, a_{n}\right\}$.
(a) Show that for sufficiently large k, the number of zeros minus the number of poles of f_{k} in \mathbb{D} (counting with multiplicities) is $m-n$.
(b) Is it always true that for sufficiently large k, the function f_{k} has m zeros in \mathbb{D} (counting with multiplicities)?
7. Consider the family \mathcal{A} of functions $f: \mathbb{D} \rightarrow \mathbb{C}$ that are holomorphic in \mathbb{D} and satisfy (1) $f(0)=0$; (2) for any $z \in \mathbb{D},|\operatorname{Re} f(z)|<1$.
(a) Show that there exists a real number M such that for all $f \in \mathcal{A}$, we have $\left|f^{\prime}(0)\right|<M$.
(b) Show that this family is compact: any sequence $\left\{f_{n}\right\}_{n \in \mathbb{N}} \in \mathcal{A}$ has a subsequence that converges locally uniformly on \mathbb{D} to a function from \mathcal{A}.
8. Two circles ω_{1}, ω_{2} are disjoint and located outside of each other. Let \mathcal{C} be the family of circles that are externally tangent to both ω_{1} and ω_{2}. Show that there exists a circle ω_{3} such that all circles in the family \mathcal{C} are perpendicular to ω_{3}.
9. For any two non-constant, non-proportional entire functions f, g, show that there exists a point $z \in \mathbb{C}$ such that

$$
f^{4}(z)+f^{3}(z) g(z)+f^{2}(z) g^{2}(z)+f(z) g^{3}(z)+g^{4}(z)=0 .
$$

10. The function f is meromorphic on \mathbb{C} and has no poles on the real line.
(a) Prove that there exist two meromorphic functions $g_{1}, g_{2}: \mathbb{C} \rightarrow \mathbb{C}$ such that $f=g_{1} g_{2}$, the poles of g_{1} are all in the upper half-plane, and the poles of g_{2} are all in the lower half-plane.
(b) Prove that there exist two meromoprhic functions $h_{1}, h_{2}: \mathbb{C} \rightarrow \mathbb{C}$ such that $f=h_{1}+h_{2}$, the poles of h_{1} are all in the upper half-plane, and the poles of h_{2} are all in the lower half-plane.
