TEXAS A\&M UNIVERSITY
 TOPOLOGY/GEOMETRY QUALIFYING EXAM

August 2023

- There are 8 problems. Work on all of them and prove your assertions.
- Use a separate sheet for each problem and write only on one side of the paper.
- Write your name on the top right corner of each page.

Problem 1 Let U be an open subset of a topological space. Is it true that U equals the interior of its closure? Justify your answer.

Problem 2 Let A be a proper subset of X and B be a proper subset of Y. If X and Y are connected, show that

$$
X \times Y-A \times B
$$

is connected. (Hint: Recall how "the product of two connected spaces is connected" is proved.)

Problem 3 Let X be a locally compact Hausdorff space. Let Y be the one-point compactification of X. Is it true that if X has a countable basis, then Y is metrizable? Prove your answer.

Problem 4 Let $\mathbb{R P}^{2}$ be the real projective plane defined as the quotient space of the 2 dimensional sphere \mathbb{S}^{2} by identifying the antipode points, i.e.,

$$
\mathbb{R} \mathbb{P}^{2}=\mathbb{S}^{2} / x \sim-x
$$

1. Compute the fundamental group of $\mathbb{R P}^{2}$.
2. Show that every continuous map from \mathbb{R}^{2} to the circle \mathbb{S}^{1} is null-homotopic. [Hint: The lifting properties might be helpful here.]

Problem 5 Let Δ be the distribution on $\mathbb{R}^{3} \backslash\{0\}$ so that, at the point $(x, y, z) \in \mathbb{R}^{3} \backslash\{0\}$,

$$
\Delta_{(x, y, z)}=\left\{a \frac{\partial}{\partial x}+b \frac{\partial}{\partial y}+c \frac{\partial}{\partial z}: a x+b y+c z=0\right\} .
$$

Is Δ an involutive distribution? Why or why not?

Problem 6 Let σ be the 2-form

$$
\sigma=\frac{x d y \wedge d z-y d x \wedge d z+z d x \wedge d y}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}
$$

on $\mathbb{R}^{3} \backslash\{0\}$.

1. Show that σ is closed, i.e., $d \sigma=0$.
2. Let $i: \mathbb{S}^{2} \hookrightarrow \mathbb{R}^{3}$ denote the inclusion map of the unit 2 -sphere into \mathbb{R}^{3}. Find $\int_{\mathbb{S}^{2}} i^{*} \sigma$.

Problem 7 Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{4}$ be given by

$$
f(x, y)=(\cos x, \sin x, \cos y, \sin y), \quad(x, y) \in \mathbb{R}^{2}
$$

1. Prove that f is an immersion.
2. The frame $e_{1}=\frac{\partial f}{\partial x}, e_{2}=\frac{\partial f}{\partial y}$ in $f\left(\mathbb{R}^{2}\right) \subset \mathbb{R}^{4}$ is orthonormal in the metric of $f\left(\mathbb{R}^{2}\right)$ induced by \mathbb{R}^{4}. Compute the dual coframe ω^{1}, ω^{2} and the connection form ω_{1}^{2}.
3. Find the Gaussian curvature of the induced metric.

Problem 8 Suppose $\gamma:[0, \infty) \rightarrow M$ is an integral curve of a smooth vector field X on the smooth manifold M and suppose further that $\gamma(t)$ converges to a point $p \in M$ as $t \rightarrow \infty$. Prove that $X_{p}=0$.

