Notation. Let \mathbb{R}^n denote real *n*-space. Let $S^n = \{x \in \mathbb{R}^{n+1} : |x| = 1\}$ denote the *n*-sphere in \mathbb{R}^{n+1} .

Employ the summation convention: any repeated index appearing as a subscript and superscript is summed over.

- 1.) Prove the *Tube Lemma*: Let X be a topological space and let Y be a compact topological space. Prove that if W is an open subset of $X \times Y$ (in the product topology) containing the "slice " $\{x_0\} \times Y$ for some $x_0 \in X$, then there exists an open neighborhood U of x_0 in X such that $U \times Y \subset W$.
- 2.) (a) Prove that an arcwise connected topological space is connected.

(b) Let X be a normal, connected topological space containing more than one point. Prove that X is uncountable. (*Hint*: Use Urysohn's lemma).

- **3.)** Let \mathbb{R}_{ℓ} denote the real line \mathbb{R} with the lower limit topology (so-called Sorgenfrey line), i.e. the topology consisting of all left-closed, right-open intervals [a, b). Let \mathbb{R}_{ℓ}^2 denote the plane \mathbb{R}^2 with the product topology $\mathbb{R}_{\ell} \times \mathbb{R}_{\ell}$.
 - (a) Find the closure of the set (a, b) in \mathbb{R}_{ℓ} .
 - (b) Prove that \mathbb{R}_{ℓ} is not a locally compact space.

(c) Take the 'anti-diagonal' $L = \{(x, -x) : x \in \mathbb{R}_{\ell}\}$ of \mathbb{R}_{ℓ}^2 . Describe the subspace topology that L inherits from \mathbb{R}_{ℓ}^2 .

(d) Prove that the space \mathbb{R}^2_{ℓ} is not Lindelöf (recall that a topological space X is called Lindelöf if every open cover of X has a countable subcover).

- 4.) Let R/Z be the quotient space obtained from R by the identification of the subspace Z to a point. (Do not confuse this with the group quotient of R by Z.) Prove that this quotient space is not first countable.
- 5.) (a) Prove that for any locally finite family of sets $\{V_{\alpha}\}_{\alpha \in A}$ in a topological space X one has

$$\overline{\bigcup_{\alpha \in A} V_{\alpha}} = \bigcup_{\alpha \in A} \overline{V_{\alpha}} \,.$$

(b) Recall that a topological space X is called countably compact if every countable cover of X has a finite subcover. Prove that a countably compact paracompact space is compact.

6.) (a) State the definition of a smooth *n*-dimensional manifold.

(b) Set
$$A = \mathbb{R}^{n+1} \setminus \{0\}$$
. Given $x, y \in A$, the condition $x \sim y$ if and only if there exists $\lambda \neq 0$ such that $y = \lambda x$

defines an equivalence relation on A. Real projective space \mathbb{RP}^n is the set of equivalence classes A/\sim . (Equivalently, \mathbb{RP}^n is the set of lines in \mathbb{R}^{n+1} through the origin.) Prove that \mathbb{RP}^n admits the structure of a smooth *n*-dimensional manifold.

- 7.) (a) State the Implicit Function Theorem.
 - (b) Consider the map $F : \mathbb{R}^3 \to \mathbb{R}^2$ defined by

$$(x, y, z) \mapsto (xz - y^2, yz - x^2).$$

For which values $(a, b) \in \mathbb{R}^2$ is $F^{-1}(a, b)$ a smooth submanifold of \mathbb{R}^3 ?

8.) Let (s,t) be coordinates on \mathbb{R}^2 and (w, x, y, z) be coordinates on \mathbb{R}^4 . Define $F: \mathbb{R}^2 \to \mathbb{R}^4$ by

$$F(s,t) = (s^2, 7st, t^3, s-t-1).$$

- (a) Compute the push-forward $F_*(\frac{\partial}{\partial s} + \frac{\partial}{\partial t})$.
- (b) Compute the pull-back $F^*(dx + y dz)$.
- 9.) Let $S = \{(x, y, z) \in \mathbb{R}^3 \mid 0 < z = x^2 + y^2\}$. Compute the Gauss and mean curvatures of S.
- **10.)** Set $N = (0, 1) \in S^1 \subset \mathbb{R}^2$, and $U = S^1 \setminus \{N\}$. Stereographic projection defines a coordinate chart $\varphi : U \to \mathbb{R}$ by

$$\varphi(x,y) = \frac{x}{1-y}$$

Let t be the Cartesian coordinate on \mathbb{R}^1 . Characterize those functions $f : \mathbb{R} \to \mathbb{R}$ for which the vector field $F = \varphi_*^{-1}(f(t)\frac{\partial}{\partial t})$, defined on U, extends to a smooth vector field on S^1 .