QUALIFYING EXAM-REAL ANALYSIS AUGUST 2023

The 10 problems below are equally weighted. Solve as many problems or portions thereof as you can in 4 hours. Please start the solution of each problem you attempt on a new sheet in your bluebook. Make sure to properly mention any named theorem that you will need in any of your solutions.

In the sequel, unless specified otherwise, \mathbb{R} (or a subset of it) is always equipped with the Borel σ -algebra and the Lebesgue measure (denoted by λ).

Problem 1. Let $f: (0,1) \to \mathbb{R}$ be a Lebesgue integrable function. For any $x \in (0,1)$ define

$$g(x) = \int_{x}^{1} \frac{f(t)}{t} d\lambda(t).$$

Prove that $g: (0,1) \to \mathbb{R}$ *is Lebesgue integrable and that* $\int_0^1 f d\lambda = \int_0^1 g d\lambda$.

Problem 2.

- (1) Let (X, \mathcal{M}, μ) be a measure space and let $(f_n)_{n \ge 1}$ be a sequence of measurable functions on X. Define what it means that $(f_n)_{n \ge 1}$ converges in measure to a measurable function g.
- (2) Give an example of a sequence of measurable functions that converges pointwise but not in measure.
- (3) Let (X, \mathcal{M}, μ) be a finite measure space and let $(f_n)_{n \ge 1}$ be a sequence of measurable functions on X that converges pointwise to g. Show that $(f_n)_{n \ge 1}$ converges in measure to g.

Problem 3.

- (1) Let $\{X_i\}_{i \in I}$ be a collection of topological spaces. Define what is the product topology on the Cartesian product $\prod_{i \in I} X_i$.
- (2) Prove that a compact metric space is separable.
- (3) Show that every compact metric space is homeomorphic to a closed subset of [0, 1]^ℕ (equipped as usual with the product topology).

Problem 4. In this problem $||f||_{\infty} = \inf\{a \ge 0 : \lambda(\{|f| > a\}) = 0\}$ is the essential norm of a measurable function. Let $L_{\infty}(\mathbb{R})$ denote the Banach space of functions that are essentially bounded and recall that $L_1(\mathbb{R})^* = L_{\infty}(\mathbb{R})$. Let $S = \{f \in L_{\infty}(\mathbb{R}) : \lambda(\{x \in \mathbb{R} : |f(x)| > \frac{1}{1+e^{-|x|}}\}) = 0\}$.

- (1) State the Banach-Alaoglu theorem.
- (2) Show that S is a weak^{*}-compact subset of $L_{\infty}(\mathbb{R})$.
- (3) Is S a norm-compact subset of $L_{\infty}(\mathbb{R})$?

Problem 5. Let $k: [0,1] \times [0,1] \to \mathbb{R}$ be continuous and C([0,1]) be the Banach space of all continuous functions from [0,1] to \mathbb{R} , endowed as usual with the sup-norm, i.e., $||f||_{\infty} = \sup_{x \in [0,1]} |f(x)|$. For $f \in C([0,1])$ define $T(f): [0,1] \to \mathbb{R}$ by:

$$T(f)(x) = \int_0^1 k(x, y) f(y) dy, \ x \in [0, 1].$$

- (1) Show that $T(C[0, 1]) \subset C([0, 1])$.
- (2) Show that T maps bounded sets to subsets of compact sets.

Problem 6.

Let $f: (0, \infty) \to \mathbb{R}$ be continuous and such that for all x > 0 the sequence $(f(nx))_{n=1}^{\infty}$ converges to 0. Show that $\lim_{x\to\infty} f(x) = 0$.

Problem 7.

- (1) State the Hahn-Banach theorem (the version for sublinear and linear functionals on a real vector space).
- For the next two questions, X is a real normed vector space and we denote by X^* the Banach space of all bounded linear functionals on X.
 - (2) Let C be a convex open set in X that contains 0 and define for all $x \in X$, $p_C(x) = \inf\{\alpha > 0 : x \in \alpha C\}$. Show that p_C is a sublinear functional on X and that $C = \{x \in X : p_C(x) < 1\}$.
 - (3) Let C be an open, convex, non-empty subset of X and $x_0 \notin C$. Show that there is $x^* \in X^*$ such that $x^*(z) < x^*(x_0)$ for all $z \in C$.

Problem 8.

- (1) Given a Banach space $(X, \|\cdot\|)$ and a sequence $(x_n)_{n \ge 1} \in X$. What does it mean that $(x_n)_{n \ge 1}$ converges weakly to $x \in X$?
- (2) Let K be a compact Hausdorff space and let C(K) be the Banach space of all continuous functions from K to \mathbb{C} , endowed as usual with the sup-norm, i.e., $||f||_{\infty} = \sup_{x \in K} |f(x)|$. Suppose $(f_n)_{n \ge 1}$ is a sequence in C(K). Show that $(f_n)_{n \ge 1}$ converges weakly if and only if $(f_n)_{n \ge 1}$ is bounded and converges pointwise.

Problem 9. Let $1 and <math>f: [0, 1] \to \mathbb{R}$ be measurable. Show that $\|f\|_q \leq \|f\|_p^s \|f\|_r^{1-s}$

where $s = \frac{\frac{1}{q} - \frac{1}{r}}{\frac{1}{p} - \frac{1}{r}}$.

Problem 10.

- (1) Give the definition of an orthonormal basis in a Hilbert space.
- (2) Show that if a Hilbert space has a countably infinite orthonormal basis then every infinite orthonormal basis is countable.