Real Analysis Qualifying Exam, May, 2008

1. Prove that if E is a closed linear subspace of $L^{2}(0,1)$ and each element in E is bounded (i.e. $f \in L^{\infty}(0,1)$ for all $f \in E$), then E is finite dimensional.
2. Let $f_{n}:=\sum_{k=1}^{2^{n}}(-1)^{k} \chi_{\left(\frac{k-1}{2^{n}}, \frac{k}{2^{n}}\right]}$. Prove that $f_{n} \rightarrow 0$ weakly in $L^{1}(0,1)$.
3. Let E be a subset of a metric space X, and let $\mathcal{B}=\{\mathrm{B}(r(x), x): x \in S\}$ be a collection of balls in X which cover E (that is, $E \subset \cup_{x \in S} \mathrm{~B}(r(x), x)$) so that the radii are bounded (that is, $\sup \{r(x): x \in S\}<\infty)$. Prove that there is a (finite or infinite) sequence $\left\{\mathrm{B}\left(r\left(x_{i}\right), x_{i}\right)\right\}_{i=1}^{N}$ of disjoint balls in \mathcal{B} so that either
(i) $N=\infty$ and $\inf \left\{r\left(x_{i}\right): i=1,2,3, \ldots\right\}>0$, or
(ii) $E \subset \cup_{n=1}^{N} \mathrm{~B}\left(5 r\left(x_{i}\right), x_{i}\right)$. (N can be either finite or infinite in this case.)
4. Prove that every separable Banach space is isometrically isomorphic to a subspace of $C(\Delta)$, where Δ is the Cantor set. You may use the topological theorem that if X is a compact metric space, then there is a continuous surjection from Δ onto X.
5. For $f \in L^{1}(0,1)$ and $y \in[0,1]$, define $(T f)(y)=\frac{1}{y} \int_{0}^{y} f(x) d x$. Show that T defines a bounded linear operator from $L^{p}(0,1)$ to $L^{p}(0,1)$ for all $1<p \leq \infty$, but T does not define a bounded linear operator from $L^{1}(0,1)$ to $L^{1}(0,1)$.
6. For $i=1,2$, let μ_{i} and ν_{i} be finite measures on a measurable space (X_{l}, Σ_{i}). Assume that $\mu_{i} \ll \nu_{i}$. Prove that $\mu_{1} \times \mu_{2} \ll \nu_{1} \times \nu_{2}$.
7. Let $\left\{f_{n}\right\}_{n=1}^{\infty}$ be a sequence of non negative functions in $L^{1}(\mathbb{R})$ which converges pointwise almost everywhere to a function f in $L^{1}(\mathbb{R})$. Prove that if $\int_{\mathbb{R}} f_{n}(t) d t \rightarrow \int_{\mathbb{R}} f(t) d t$, then $\int_{\mathbb{R}}\left|f_{n}(t)-f(t)\right| d t \rightarrow 0$.
8. Let $f \in L^{1}(0,1)$ be such that for all $n=1,2,3, \ldots, \int_{0}^{1} f(t) t^{2 n} d t=0$. Prove that $f=0$ a.e.
9. A sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ in a Banach space X is said to be weakly Cauchy provided that for each $x^{*} \in X^{*}$, the sequence $\left\{x *\left(x_{n}\right)\right\}_{n=1}^{\infty}$ or real numbers is convergent. Let K be a compact Hausdorff space. Prove that a sequence $\left\{f_{n}\right\}_{n=1}^{\infty}$ in $C(K)$ is weakly Cauchy if and only if $\left\{f_{n}\right\}_{n=1}^{\infty}$ is bounded and pointwise convergent. Deduce that if $\left\{f_{n}\right\}_{n=1}^{\infty}$ is a weakly Cauchy sequence in $C[0,1]$, then $\left\{f_{n}\right\}_{n=1}^{\infty}$ is NORM convergent in $L^{1}(0,1)$.
10. Write μ for Lebesgue measure on the Borel subsets of the unit interval $[0,1]$. Recall that a Borel probability measure ν on $[0,1]$ is singular with respect to μ (in symbols, $\nu \perp \mu)$ if there is a Borel set $D \subseteq[0,1]$ such that $\nu(D)=1$ and $\mu(D)=0$. Let ν be a Borel probability measure on $[0,1]$. Show that $\nu \perp \mu$ if and only if for every $\varepsilon>0$ there is a continuous function $f:[0,1] \rightarrow[0,1]$ such that $\nu(f)>1-\varepsilon$ and $\mu(f)<\varepsilon$.
