Real Analysis Qualifying Exam, May, 2008

1. Prove that if E is a closed linear subspace of $L^2(0,1)$ and each element in E is bounded (i.e. $f \in L^{\infty}(0,1)$ for all $f \in E$), then E is finite dimensional.

2. Let $f_n := \sum_{k=1}^{2^n} (-1)^k \chi_{(\frac{k-1}{2^n}, \frac{k}{2^n}]}$. Prove that $f_n \to 0$ weakly in $L^1(0, 1)$.

3. Let *E* be a subset of a metric space *X*, and let $\mathcal{B} = \{B(r(x), x) : x \in S\}$ be a collection of balls in *X* which cover *E* (that is, $E \subset \bigcup_{x \in S} B(r(x), x)$) so that the radii are bounded (that is, $\sup\{r(x) : x \in S\} < \infty$). Prove that there is a (finite or infinite) sequence $\{B(r(x_i), x_i)\}_{i=1}^N$ of disjoint balls in \mathcal{B} so that either

- (i) $N = \infty$ and $\inf\{r(x_i) : i = 1, 2, 3, ...\} > 0$, or
- (ii) $E \subset \bigcup_{n=1}^{N} B(5r(x_i), x_i)$. (N can be either finite or infinite in this case.)

4. Prove that every separable Banach space is isometrically isomorphic to a subspace of $C(\Delta)$, where Δ is the Cantor set. You may use the topological theorem that if X is a compact metric space, then there is a continuous surjection from Δ onto X.

5. For $f \in L^1(0,1)$ and $y \in [0,1]$, define $(Tf)(y) = \frac{1}{y} \int_0^y f(x) dx$. Show that T defines a bounded linear operator from $L^p(0,1)$ to $L^p(0,1)$ for all 1 , but T does not $define a bounded linear operator from <math>L^1(0,1)$ to $L^1(0,1)$.

6. For i = 1, 2, let μ_i and ν_i be finite measures on a measurable space (X_l, Σ_i) . Assume that $\mu_i \ll \nu_i$. Prove that $\mu_1 \times \mu_2 \ll \nu_1 \times \nu_2$.

7. Let $\{f_n\}_{n=1}^{\infty}$ be a sequence of non negative functions in $L^1(\mathbb{R})$ which converges pointwise almost everywhere to a function f in $L^1(\mathbb{R})$. Prove that if $\int_{\mathbb{R}} f_n(t) dt \to \int_{\mathbb{R}} f(t) dt$, then $\int_{\mathbb{R}} |f_n(t) - f(t)| dt \to 0$.

8. Let $f \in L^1(0,1)$ be such that for all $n = 1, 2, 3, ..., \int_0^1 f(t) t^{2n} dt = 0$. Prove that f = 0 a.e.

9. A sequence $\{x_n\}_{n=1}^{\infty}$ in a Banach space X is said to be *weakly Cauchy* provided that for each $x^* \in X^*$, the sequence $\{x * (x_n)\}_{n=1}^{\infty}$ or real numbers is convergent. Let K be a compact Hausdorff space. Prove that a sequence $\{f_n\}_{n=1}^{\infty}$ in C(K) is weakly Cauchy if and only if $\{f_n\}_{n=1}^{\infty}$ is bounded and pointwise convergent. Deduce that if $\{f_n\}_{n=1}^{\infty}$ is a weakly Cauchy sequence in C[0, 1], then $\{f_n\}_{n=1}^{\infty}$ is NORM convergent in $L^1(0, 1)$.

10. Write μ for Lebesgue measure on the Borel subsets of the unit interval [0, 1]. Recall that a Borel probability measure ν on [0, 1] is *singular* with respect to μ (in symbols, $\nu \perp \mu$) if there is a Borel set $D \subseteq [0, 1]$ such that $\nu(D) = 1$ and $\mu(D) = 0$. Let ν be a Borel probability measure on [0, 1]. Show that $\nu \perp \mu$ if and only if for every $\varepsilon > 0$ there is a continuous function $f : [0, 1] \rightarrow [0, 1]$ such that $\nu(f) > 1 - \varepsilon$ and $\mu(f) < \varepsilon$.