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1. How many quadruples (a, b, c, d) of positive integers are there such that a ≤ b ≤ c ≤ d
and

1

a
+

1

b
+

1

c
+

1

d
= 2?

Answer: 4. [The quadruples are (1, 2, 3, 6), (1, 2, 4, 4), (1, 3, 3, 3) and (2, 2, 2, 2).]

If a > 2 then a−1 + b−1 + c−1 + d−1 ≤ 4a−1 < 2. Hence a is at most 2. If a = 2 then
a−1 + b−1 + c−1 + d−1 ≤ 4a−1 = 2. Moreover, the equality is attained only if a = b = c = d = 2.
This gives us one quadruple (2, 2, 2, 2). To find the others, we need to set a = 1.

If b = 1 then a−1 + b−1 + c−1 + d−1 > a−1 + b−1 = 2. Hence b ≥ 2. If b ≥ 3 then a−1 + b−1 +
c−1+d−1 ≤ 1+3b−1 ≤ 2. Moreover, the equality is attained only if b = c = d = 3. We find another
quadruple (1, 3, 3, 3) and set b = 2 for the remainder of our search.

Now a = 1 and b = 2 so that c−1 + d−1 = 1/2. Since c−1 < c−1 + d−1 ≤ 2c−1, it follows that
2 < c ≤ 4. Hence c = 3 or 4. Then d = 6 or 4, respectively. Thus the remaining quadruples are
(1, 2, 3, 6) and (1, 2, 4, 4).

2. A 5× 5 square drawn on the square grid is then cut into smaller squares (all cuts go
along the grid lines). What is the minimal possible number of pieces in such a partition?

Answer: 8.

First we describe a partition into 8 pieces. It begins with two cuts, one horizontal and one
vertical, each dividing the 5× 5 square in proportion 2 : 3. The cuts produce one 3× 3 square, one
2× 2 square, and two rectangles of dimensions 2× 3 and 3× 2. Then each rectangle is further cut
into one 2× 2 square and two 1× 1 squares. Overall we have one 3× 3 square, three 2× 2 squares
and four 1× 1 squares.

Now we are going to show that any partition has at least 8 pieces. First assume we have a 4×4
piece. Then the rest must be cut into 1× 1 squares. Since the area of the entire square is 52 = 25
(where the unit area is that of a 1 × 1 square) and the area of the large piece is 42 = 16, we will
have 9 unit squares, for a total of 10 pieces.

Next assume we have a 3 × 3 piece. Such a piece contains the central grid square, hence it is
unique. Let us slice the 5×5 square into five horizontal strips of dimensions 1×5. If a k×k square
intersects a strip, there are exactly k unit squares in the intersection. It follows that every strip
intersects a piece of odd dimensions. Since the 3 × 3 square intersects only three strips, we must
have at least two 1×1 pieces. From area considerations, 52 = 32+22k2+k1, where k1 is the number
of 1×1 pieces and k2 is the number of 2×2 pieces. Then k2 = (16−k1)/4 ≤ (16−2)/4 = 3.5 so that
k2 ≤ 3. Also, k1 = 16−4k2. Hence the total number of pieces is 1+k2+k1 = 17−3k2 ≥ 17−3·3 = 8.

It remains to consider the case when we have only 1× 1 and 2× 2 pieces. Let k1 be the number
of 1 × 1 pieces and k2 be the number of 2 × 2 pieces. From area considerations, k1 + 4k2 = 25.
Slicing the 5× 5 square into 1× 5 strips as above, we obtain that each strip contains a 1× 1 piece.
Hence k1 ≥ 5. In fact, some strip contains more than one 1× 1 piece so that k1 ≥ 6. Indeed, if the
top and the bottom strips contain only one piece of dimensions 1×1, then there are two 2×2 pieces
adjacent to the top side of the big square and another two 2 × 2 pieces adjacent to the bottom
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side. Between those four, there is no place for another 2× 2 piece. Hence the middle strip is filled
by 1 × 1 pieces. The inequality k1 ≥ 6 implies that k2 = (25 − k1)/4 ≤ (25 − 6)/4 = 4.75 so that
k2 ≤ 4. Then the total number of pieces is k1 + k2 = (25− 4k2) + k2 = 25− 3k2 ≥ 25− 3 · 4 = 13.

3. For any positive integer n let S(n) denote the sum of its digits (in decimal notation).
Find all integers n such that n + S(n) = 2019.

Answer: 1995, 2013.

Since n ≤ 2019, the number n has at most four digits. Moreover, if n has exactly four digits,
the first digit is at most 2. Hence S(n) ≤ 2+3 ·9 = 29. Then n = 2019−S(n) ≥ 2019−29 = 1990.
It follows that the decimal representation of n is either 20d1d0 or 199d0, where d0 and d1 are
some decimal digits. In the first case, n = 2000 + 10d1 + d0 and S(n) = 2 + d1 + d0. Then
n+S(n) = 2002+11d1+2d0. The latter equals 2019 if and only if 11d1+2d0 = 17. This is possible
only if d1 = 1 and d0 = 3.

In the second case, n = 1990 + d0 and S(n) = 19 + d0. Then the equation n + S(n) = 2019 is
reduced to 2009 + 2d0 = 2019. The only solution is d0 = 5.

4. Find the area of the region bounded by the curves y = |x− 2| − 1 and y = 3− |x|.
Answer: 6.

The curve y = |x− 2| − 1 is a right angle, with the vertex A = (2,−1) and opening up (that is,
the angle bisector goes in the direction of the y-axis). The curve y = 3−|x| is also a right angle, with
the vertex B = (0, 3) and opening down (that is, the angle bisector goes in the direction opposite
to that of the y-axis). The point B lies above the curve y = |x−2|−1 (since 3 > |0−2|−1), which
means it is inside the right angle. Similarly, the point A lies inside the other right angle. It follows
that the region R bounded by the two curves is a rectangle. The points A and B are opposite
vertices of R. The other two vertices are points of intersection of the curves. To find them, we
solve the system

{

y = |x− 2| − 1,
y = 3− |x|.

The system implies that |x− 2| − 1 = 3− |x|, hence |x|+ |x− 2| = 4. To solve the latter equation,
we consider three cases: x < 0, 0 ≤ x < 2, and x ≥ 2. In the first case the equation becomes
−x − (x − 2) = 4, then −2x = 2 and x = −1 (note that −1 < 0). In the second case, we have
−x + (x − 2) = 4, which yields no solution. In the third case, we obtain x + (x − 2) = 4, then
2x = 6 and x = 3 (note that 3 ≥ 2). If x = −1 then y = 2. If x = 3 then y = 0.

Let C = (3, 0). By the above AC and BC are adjacent sides of the rectangle R. We obtain
that |AC| =

√

(3− 2)2 + (0− (−1))2 =
√
2 and |BC| =

√

(3− 0)2 + (0− 3)2 = 3
√
2. Then the

area of R equals |AC| · |BC| =
√
2 · 3

√
2 = 6.

5. Evaluate the product

(

1− 1

22

)(

1− 1

32

)(

1− 1

42

)

. . .

(

1− 1

20192

)

.

Answer:
1010

2019
.

Each factor in the product is of the form 1− 1/n2, where n runs from 2 to 2019. We transform
it as follows:

1− 1

n2
=

(

1− 1

n

)(

1 +
1

n

)

=
n− 1

n
· n+ 1

n
.
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Now the product decomposes into two telescopic products:

(

1− 1

22

)(

1− 1

32

)(

1− 1

42

)

. . .

(

1− 1

20192

)

=

(

1

2
· 2
3
· 3
4
· . . . · 2018

2019

)(

3

2
· 4
3
· 5
4
· . . . · 2020

2019

)

=
1

2019
· 2020

2
=

1010

2019
.

6. Let ABC be an acute triangle. Let AH1, BH2 and CH3 be the altitudes of this
triangle. Find the length of the side AB if |AH1| = |BH2| = 12 and |CH3| = 10.

Answer: 15.

Let x = |AB|. Since each of the products |BC|·|AH1|, |AC|·|BH2| and |AB|·|CH3| equals twice
the area of the triangle ABC, it follows that |AC| = |BC| = 10x/12 = 5x/6. In particular, the
triangle ABC is isosceles. Hence the altitude CH3 is also the median so that |AH3| = |H3B| = x/2.
By the Pythagorean Theorem, |AC|2 = |AH3|2 + |CH3|2. That is, (5x/6)2 = (x/2)2 + 102. Then
102 = (5x/6)2 − (x/2)2 = x2(25/36 − 1/4) = 4x2/9. Therefore x2 = 9 · 102/4 = 152. Thus x = 15.

7. The equation x2 − x− 5 +
√
x2 − x+ 1 = 0 has two real solutions. Find their sum.

Answer: 1.

Let y =
√
x2 − x+ 1. Then x2 − x− 5 = (x2 − x+ 1) − 6 = y2 − 6 and the equation becomes

y2 + y − 6 = 0. This quadratic equation in y has roots 2 and −3. By construction, y ≥ 0. Hence
y = 2. Returning to the original variable, we obtain x2−x+1 = 22 or, equivalently, x2−x−3 = 0.
The latter equation has roots 1

2
(1−

√
13) and 1

2
(1 +

√
13). Their sum equals 1.

Alternative solution: Suppose x1 is a real solution of the equation. Let x2 = 1 − x1. Then
x22 − x2 = x2(x2 − 1) = (1− x1)(1− x1 − 1) = x1(x1 − 1) = x21 − x1, which implies that x2 is also a
solution. Note that x2 6= x1 (otherwise x1 = 1/2, but 1/2 is not a solution). Hence x1 and x2 are
the two real solutions of the equation. Their sum is x1 + x2 = x1 + (1− x1) = 1.

8. Find a positive integer n such that 12 + 22 + · · ·+ n2 = 702. [Hint: the formula for
the sum is 1

6
n(n+ 1)(2n+ 1).]

Answer: 24.

Since 12+22+ · · ·+n2 = 1

6
n(n+1)(2n+1), we need to find an integer solution of the equation

n(n+1)(2n+1) = 6 ·702. Notice that any two of the numbers n, n+1 and 2n+1 have no common
divisors other than 1. Indeed, any common divisor of n and n+ 1 will also divide their difference
(n + 1) − n = 1, any common divisor of n and 2n + 1 will also divide (2n + 1) − 2n = 1, and any
common divisor of n + 1 and 2n + 1 will also divide 2(n + 1) − (2n + 1) = 1. Since the prime
factorization of 6 · 702 is 23 · 3 · 52 · 72, it follows that one of the numbers n, n + 1 and 2n + 1 is
divisible by 72 = 49. Clearly, n < 70. Then n + 1 < 71 < 2 · 49 and 2n + 1 < 141 < 3 · 49. Also,
2n + 1 6= 2 · 49 as it is odd. We conclude that one of the numbers n, n + 1 and 2n + 1 is exactly
49. A quick check shows 2n+ 1 is that number. Then n = 24 = 23 · 3 and n+ 1 = 25 = 52.

9. A parallelogram is inscribed in a circle of radius 2 and circumscribed about a circle
of radius

√
2. Find the length of the shortest side of the parallelogram.
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Answer: 2
√
2.

A quadrilateral can be inscribed in a circle if and only if the sum of opposite angles equals π.
In any parallelogram, the opposite angles are equal. Therefore a parallelogram can be inscribed in
a circle if and only if it is a rectangle.

A convex quadrilateral can be circumscribed about a circle if and only if the sums of lengths of
opposite sides are equal. In any parallelogram, the opposite sides are of the same length. Therefore
a parallelogram can be circumscribed about a circle if and only if it is a rhombus.

Thus our parallelogram is both a rectangle and a rhombus. Hence it is a square. Then all sides
are of the same length, which is also equal to the diameter of the inscribed circle, 2

√
2.

10. Find all pairs (x, y) satisfying the system
{

x3 + y3 = xy(x+ y),
x2 + y2 = 8.

Answer: (−2,−2), (−2, 2), (2,−2), (2, 2).

Since x3+y3 = (x+y)(x2−xy+y2), the first equation is equivalent to (x+y)(x2−2xy+y2) = 0
or (x + y)(x − y)2 = 0. Hence x = y or x = −y. Substituting x = ±y into the second equation,
we obtain 2y2 = 8, which has solutions y = −2 and y = 2. Then x = −2 or x = 2. Note that any
combination of signs for x and y produces a solution of the system.

11. The interior angles of a certain convex polygon add up to 900 degrees. How many
sides does the polygon have?

Answer: 7.

Let n denote the number of sides of the polygon. We choose a vertex and connect it to every
other vertex by a segment. Two of these n−1 segments are sides of the polygon. Since the polygon
is convex, the other n− 3 segments are diagonals. They cut the polygon into n− 2 triangles. Note
that the sum of all (interior) angles of the polygon equals the sum of all angles of all triangles in the
partition. Since the angles of any triangle add up to 180 degrees, there are 900/180 = 5 triangles.
Hence n− 2 = 5, then n = 7.

12. Find all integers n in the range from 50 to 100 such that the fraction
3n + 2

13n− 1
is not

reduced to lowest terms.

Answer: 67, 96.

For any integer n, the numbers 3n + 2 and 13n − 1 are different from zero. If the fraction
3n+ 2

13n − 1
is not reduced, then the fraction

13n − 1

3n+ 2
is not reduced as well. Since

13n − 1

3n+ 2
= 4 +

n− 9

3n+ 2
,

neither is the fraction
n− 9

3n + 2
. The same holds true for the fraction

3n+ 2

n− 9
(unless n = 9). Since

3n+ 2

n− 9
= 3 +

29

n− 9
,
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the fraction
29

n− 9
is not reduced as well. The number 29 is prime. Hence n− 9 is a multiple of 29

(this also includes the case n = 9). Conversely, if n − 9 = 29k for some integer k, then 3n + 2 =
3(9+29k)+2 = 29+3·29k = 29(3k+1) and 13n−1 = 13(9+29k)−1 = 116+13·29k = 29(13k+4)

so that the fraction
3n+ 2

13n − 1
is not reduced.

Thus we are looking for numbers of the form n = 9+29k, where k is an integer. There are two
such numbers in the range from 50 to 100, namely, 67 = 9 + 2 · 29 and 96 = 9 + 3 · 29.

13. Let ABC be an obtuse triangle. Let AD be the altitude and AE be the angle
bisector of the triangle ABC. Find the length of the side BC if |BE| = |DE| = 3 and
|AE| = 6.

Answer: 5.

The points B, D and E lie on the same line BC. Since |BE| = |DE|, it follows that either E
is the midpoint of the segment BD, or else D coincides with B. The latter would imply that the
triangle ABC is right while it is assumed to be obtuse. Hence E is the midpoint of BD. As it will
turn out below, |BC| < |BD| so that the base D of the altitude AD lies on the extension of the
side BC beyond the endpoint C.

Let x = |EC|. Then |CD| = |3 − x|. The triangles ADE, ADB and ADC are right. By the
Pythagorean Theorem, |AD|2 = |AE|2 − |DE|2 = 62 − 32 = 27, then |AB|2 = |BD|2 + |AD|2 =
62 + 27 = 63 and |AC|2 = |AD|2 + |CD|2 = 27 + (3− x)2 = x2 − 6x+ 36.

The angle bisector AE divides the side BC of the triangle ABC into two segments whose
lengths are proportional to lengths of the other two sides:

|AB|
|BE| =

|AC|
|EC| .

Squaring both sides of this equality and substituting the lengths, we obtain

63

9
=

x2 − 6x+ 36

x2
,

which is simplified to x2 + x− 6 = 0. The quadratic equation has two roots, 2 and −3. Only the
positive root makes sense here. Thus |EC| = 2, then |BC| = |BE|+ |EC| = 3 + 2 = 5.

14. Find the smallest positive integer that has exactly 2019 different divisors. [Hint: the
number is too big to write out; find some expression for it.]

Answer: 2672 · 32.
Every integer n ≥ 2 can be factored into a product of primes: n = pd1

1
pd2
2
. . . pdk

k
, where

p1, p2, . . . , pk are distinct primes and d1, d2, . . . , dk are positive integers. Then any divisor of n is of
the form pc1

1
pc2
2
. . . pck

k
, where 0 ≤ ci ≤ di, i = 1, 2, . . . , k. There are d1 + 1 ways to choose c1 (from

0 to d1), d2 + 1 ways to choose c2, and so on. All choices are independent and in the end we get a
unique divisor of n. Therefore the total number of divisors is (d1 + 1)(d2 + 1) . . . (dk + 1).

Now we need to get a prime factorization of 2019. It is easy to see that 2019 is divisible by 3:
2019 = 3 · 673. The number 673 turns out to be prime. To verify this, it is enough to check that
673 has no prime divisors in the range from 1 to

√
673. Note that

√
673 <

√
729 = 27. Hence the

prime numbers to check are 2, 3, 5, 7, 11, 13, 17, 19 and 23. None of them divides 673.
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Since the prime factorization of 2019 is 3 · 673, it follows from the above that all numbers that
have exactly 2019 divisors are of the form p2018, where p is prime, or of the form p21p

672
2 , where p1

and p2 are distinct primes. The smallest of them is, clearly, one of the numbers 22018, 22 · 3672 and
32 · 2672. To compare these numbers, observe that 23 < 32 < 24. Then 22018 > 32 · 22014 > 32 · 2672
and 22 · 3672 = 22 · 32 · (32)335 > 22 · 32 · (23)335 = 32 · 21007 > 32 · 2672. Thus the smallest number is
32 · 2672.

15. A regular dodecagon (12-gon) is inscribed into a circle of radius 1. How many
diagonals of the dodecagon intersect the concentric circle of radius 2/3?

Answer: 30.

Let A and B be two vertices of the dodecagon and O be the center of the circle. If A and B are
adjacent vertices, then AB is a side of the dodecagon and the angle ∠AOB equals 2π/12 = π/6.
Otherwise AB is a diagonal and ∠AOB = πk/6, where k = 2, 3, 4, 5 or 6. In the case k = 6, the
diagonal AB goes through the center O and hence intersects any concentric circle. There are 6
such diagonals. For 2 ≤ k ≤ 5, there are 12 diagonals such that ∠AOB = πk/6. In the latter case,
the points A, B and O are vertices of a triangle. Let OH be the altitude of this triangle. Since
the triangle is isosceles, |OA| = |OB| = 1, the altitude OH is also the angle bisector. The diagonal
AB intersects the concentric circle of radius 2/3 if the distance from the diagonal to the center,
which equals |OH|, is less than 2/3. Since OHA is a right triangle, ∠AHO = π/2, we obtain that
|OH| = |OA| cos∠AOH = cos∠AOH = cos 1

2
∠AOB = cos(πk/12).

Now we need to compare the numbers cos(π/6), cos(π/4), cos(π/3) and cos(5π/12) with 2/3.
Recall that the cosine decreases as the angle increases. Therefore cos(5π/12) < cos(π/3) = 1/2,
which is less than 2/3. Also, cos(π/6) > cos(π/4) =

√

1/2, which is greater than 2/3 =
√

4/9.
Thus the concentric circle of radius 2/3 is intersected by 6 + 12 + 12 = 30 diagonals.

16. Eight coins are arranged in a row and numbered from left to right (the leftmost is
the first, the rightmost is the eighth). We start turning the coins over, one coin at a time,
according to the following rule: if we see k heads (and 8 − k tails) then the k-th coin is
turned over next. We keep turning the coins over until we see eight tails and no heads. Then
we are done. What is the maximal possible number of turns?

Answer: 36. [Achieved for a unique initial configuration: TTTTHHHH .]

Let us split all turns into batches of consecutive turns of the same kind. Suppose that the first
turn is tails-to-heads. In this case, we first do m1 ≥ 1 tails-to-heads turns, then m2 ≥ 1 heads-to-
tails turns, then m3 ≥ 1 tails-to-heads turns, and so on. . . In the case the first turn is heads-to-tails,
we begin with m1 ≥ 1 heads-to-tails turns, which are followed by m2 ≥ 1 tails-to-heads turns, and
so on. . .

The key observation is that mi+1 > mi for all i (whenever mi+1 is defined). Moreover, all coins
turned over in the batch of mi turns will be turned over again in the next batch. Indeed, let ki
be the number of the coin turned over first in the batch of mi turns. First assume the turns in
this batch are tails-to-heads. Then each turn increases the number of heads by 1 and so the next
coin to be turned over is the first coin to the right of the previously turned one. Hence in this
batch we turn over coins with consecutive numbers ki, ki +1, ki +2, . . . , ki +mi − 1. After that we
turn over the coin with number ki +mi, which is the first turn in the batch of mi+1 heads-to-tails
turns. In this batch each turn decreases the number of heads by 1, hence we turn over coins with

6



descending numbers ki +mi, ki +mi − 1, . . . The batch ends as soon as we reach a coin showing
tails. By the above this cannot happen until we turn over all coins that were turned over in the
previous batch. As a consequence, mi+1 > mi. The argument is similar in the case when turns
in the batch of mi turns are heads-to-tails. In that case we first turn over coins with descending
numbers ki, ki − 1, . . . , ki −mi + 1. In the next batch we turn over coins with ascending numbers
ki −mi, ki −mi + 1, . . . until we reach a coin showing heads, which cannot happen before we get
past the coin with number ki.

Since, obviously, mi ≤ 8 for all i, the inequality mi+1 > mi leads to an upper bound on the
total number of turns: m1 +m2 +m3 + · · · ≤ 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 = 36. This number is
indeed achieved, for an initial configuration TTTTHHHH (T for tails, H for heads).

Alternative solution: Let us consider a more general problem where we start with an arbitrary
number n of coins. Let Fn be the maximal possible number of turns for n coins and Wn be an
initial configuration for which this number is achieved. We denote a configuration of coins by a
string of letters H (“heads”) and T (“tails”). It is easy to see that F1 = 1 and W1 = H (H → T ).
Also, F2 = 3 and W2 = TH (TH → HH → HT → TT ). Notice that W1 and W2 are unique. We
are going to show that for any n ≥ 3 we have Fn = Fn−2 + 2n − 1 and Wn = TWn−2H, or else
Fn = Fn−1 and Wn = Wn−1T . Then it follows by induction that Fn = 1+ 2+ · · ·+ n = 1

2
n(n+ 1)

for all n ≥ 1. In particular, F8 = 36. Besides, it follows that the configuration Wn is unique, ⌊n/2⌋
tails followed by ⌈n/2⌉ heads. In particular, W8 = TTTTHHHH.

Let W be an initial configuration of n ≥ 3 coins. First we consider the case when W = T .
In this case the rightmost coin is never turned over. All turns happen inside the box, moreover,
they are done as if n − 1 coins in the box was the complete configuration. Therefore we get the
maximal possible number of turns (for this particular case) if the configuration in the box is Wn−1.
It follows that Fn ≥ Fn−1. Furthermore, if Fn = Fn−1 then Wn = Wn−1T .

Next we consider the case W = T H. In this case all turns happen inside the box until
we get all tails in the box. Moreover, n − 2 coins in the box are turned over as if that were the
complete configuration. Therefore we get the maximal number of turns if the configuration in the
box is Wn−2. Once we get all tails in the box, the full configuration is n − 1 tails followed by one
heads. After that all tails are turned over from left to right so that we get n heads. Then all coins
are turned over one last time, this time from right to left, and we get all tails. It follows that
Fn ≥ Fn−2 + 2n − 1. Furthermore, if Fn = Fn−2 + 2n− 1 then Wn = TWn−2H.

Similarly, we consider the case W = HH . . .HT H. Let k ≥ 1 be the number of heads to
the left of the box. Then we have n − k − 2 coins in the box. The maximal number of turns is
achieved when the initial configuration in the box is Wn−k−2. First we have Fn−k−2 turns inside
the box. Once we get all tails in the box, the full configuration is k heads followed by n − k − 1
tails followed by one heads. After that all tails are turned over from left to right so that we get
n heads and, finally, all coins are turned over from right to left. The total number of turns is
Fn−k−2 + 2n− k − 1. Notice that Fm ≥ Fm−1 for any m ≥ 2 as follows from the above. Therefore
Fn−k−2 + 2n− k − 1 ≤ Fn−2 + 2n− k − 1 < Fn−2 + 2n− 1. Hence in this case we can never get as
many turns as with the initial configuration TWn−2H.

The remaining possibilities for W are HH . . .HTH and HH . . .H. They will lead to n + 1
and n turns, respectively, which is less than Fn−2 + 2n− 1. Thus Fn = max(Fn−1, Fn−2 + 2n− 1).
Moreover, Wn = Wn−1T if Fn = Fn−1 and Wn = TWn−2H if Fn = Fn−2 + 2n− 1.

17. Three solid balls of radius 1 are placed on a horizontal floor so that they touch one
another. The balls are firmly attached to the floor and cannot move. The fourth ball of
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radius 1 is put into a hole formed by the first three balls. Find the clearance between the
fourth ball and the floor.

Answer:

√

8

3
= 2

√

2

3
=

2
√
6

3
.

Let O1, O2 and O3 be centers of the first three balls. Let Di, 1 ≤ i ≤ 3 be the point at which
the ball with center Oi is attached to the floor. Let O4 be the center of the fourth ball and D4 be
the point of this ball closest to the floor. The clearance d between the fourth ball and the floor
is the distance from D4 to the plane of the triangle D1D2D3. Note that D1O1, D2O2, D3O3 and
D4O4 are vertical segments of length 1. Therefore d is also the distance from the point O4 to the
plane of the triangle O1O2O3.

It is easy to observe that the fourth ball touches the first three balls. Hence all four balls touch
one another. It follows that the distance between any two of the centers is 1+ 1 = 2. Let H be the
projection of O4 onto the plane of the triangle O1O2O3. Then d = |O4H|. The segment O4H is
orthogonal toOiH for 1 ≤ i ≤ 3. By the Pythagorean Theorem, |OiH|2 = |OiO4|2−|O4H|2 = 4−d2.
In particular, H is the center of the equilateral triangle O1O2O3 and OiH, 1 ≤ i ≤ 3 are radii of
the circumscribed circle.

Let OA be the altitude of the triangle O1HO2. Then |O1H| = |O1A|/ cos∠HO1O2. Since
the triangle O1HO2 is isosceles, |O1H| = |O2H|, the altitude OA is also the median. Hence
|O1A| = 1

2
|O1O2| = 1. Further, the triangles O1HO2 and O1HO3 are congruent since |O1H| =

|O2H| = |O3H| and |O1O2| = |O1O3|. It follows that ∠HO1O2 = ∠HO1O3. Therefore ∠HO1O2 =
1

2
∠O3O1O2 = π/6. Then |O1H| = 1/ cos(π/6) = 2/

√
3. Since |O1H|2 = 4 − d2, we obtain that

d2 = 4− |O1H|2 = 4− 4/3 = 8/3, then d =
√

8/3 = 2
√

2/3 = 2
√
6/3.

18. Find all integers n between 100 and 200 such that the number n! = 1 · 2 · 3 · . . . · n
(n factorial) is divisible by 2n−1.

Answer: 128.

We are going to show that n! is divisible by 2n−1 if and only if n is a power of 2. The only
power of 2 in the range from 100 to 200 is 128 = 27.

For any positive integers n and k let Nk(n) denote the number of all integers in the range from
1 to n divisible by 2k. Since n! = 1 · 2 · 3 · . . . · n, the largest power of 2 that divides n! is 2K , where
K = N1(n) +N2(n) +N3(n)+ . . . It is easy to observe that Nk(n) = ⌊n/2k⌋. Let k0 be the largest
integer such that 2k0 ≤ n. Then Nk(n) = 0 for k > k0. We obtain

K =
⌊ n

21

⌋

+
⌊ n

22

⌋

+ · · ·+
⌊ n

2k0

⌋

≤ n

21
+

n

22
+ · · ·+ n

2k0
= n

(

1− 1

2k0

)

= n− n

2k0
≤ n− 1.

Moreover, the equality is attained only if n = 2k0 , that is, n is a power of 2.

19. A right triangle with sides of length 3, 4 and 5 is cut out of paper. One folds the
triangle along a straight line so that the folded figure is also a triangle. What is the minimal
possible area of the new triangle?

Answer:
10

3
.

Let ℓ be the line along which we fold the triangle. The line ℓ intersects the triangle in a segment,
which is going to be a side of the folded polygon. If the segment connects two sides of the original
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triangle, then the sum of two angles adjacent to the segment will be greater than π, which implies
that the folded polygon will not be a triangle. Hence the line ℓ goes through a vertex of the original
triangle.

Let A be the vertex of the original triangle that lies on ℓ. Let B and C be the other two
vertices denoted so that |AB| > |AC|. Let D be the point at which the line ℓ intersects the side
BC. Folding consists of reflecting one of the triangles ADB and ADC (say, ADC) about ℓ. Note
that points A, B and D are going to be vertices of the folded polygon. If ∠BAD < ∠CAD then
the reflected image of C will be another vertex and we will not get a triangle. On the other hand,
if ∠BAD ≥ ∠CAD then the reflected image of the triangle ADC is contained inside the triangle
ADB and so the folded figure is the triangle ADB. To minimize the area of this triangle, we need
to minimize the angle BAD. The angle is minimal when ∠BAD = ∠CAD, that is, when we fold
along the angle bisector. The area of the triangle ADB equals 1

2
|AD| · |AB| sin∠BAD and the area

of the triangle ADC equals 1

2
|AD| · |AC| sin∠CAD. In the case ∠BAD = ∠CAD, we obtain

area(△ADB)

area(△ADC)
=

|AB|
|AC| , then

area(△ADB)

area(△ABC)
=

|AB|
|AB|+ |AC| .

The triangle ABC has sides of length 3, 4 and 5. Since 32+42 = 52, it is right, with legs 3 and 4.
Hence area(△ABC) = 1

2
· 3 · 4 = 6. Depending on which vertex is A, the ratio |AB|/(|AB|+ |AC|)

can be 4/(4 + 3) = 4/7, 5/(5 + 3) = 5/8 or 5/(5 + 4) = 5/9. The least of these numbers is 5/9.
Thus the minimal possible area of the new triangle is 6 · 5/9 = 10/3, achieved when folding along
the bisector of the angle formed by the sides of length 4 and 5.

20. An integer-valued function f(n) of an integer argument n satisfies a functional
equation f(f(x)) + 2f(y) = f(x+ 2y)− 3 for all integers x and y. Find f(5).

Answer: 4. [The function is f(n) = n− 1.]

Given an arbitrary integer z, let us write down the functional equation first for x = 0, y = z+1
and then for x = 2, y = z:

f(f(0)) + 2f(z + 1) = f(2z + 2)− 3,

f(f(2)) + 2f(z) = f(2z + 2)− 3.

Since the right-hand sides are the same in both equalities, it follows that

f(f(0)) + 2f(z + 1) = f(f(2)) + 2f(z).

Then f(z + 1) − f(z) = α, where α = 1

2
f(f(2)) − 1

2
f(f(0)) is a constant. Hence for any integer n

the sequence f(n), f(n + 1), f(n + 2), . . . is an arithmetic progression with common difference α.
It follows that f is a linear function, f(n) = αn+ β for all integers n, where β is another constant.
Substituting this formula into the functional equation, we obtain

α(αx + β) + β + 2(αy + β) = α(x+ 2y) + β − 3,

which is simplified to (α2 − α)x + αβ + 2β + 3 = 0. Since x can be any integer, the functional
equation is satisfied if and only if α2 − α = 0 and αβ + 2β + 3 = 0. The first of the two equations
has solutions α = 0 and α = 1. If α = 0 then 2β +3 = 0 so that β = −3

2
. If α = 1 then 3β +3 = 0

so that β = −1. Thus f(n) = −3

2
or f(n) = n− 1. Since the function f is supposed to take integer

values, the right formula is f(n) = n− 1. Then f(5) = 4.
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