CD EXAM
 Texas A\&M High School Math Contest

November 9th, 2019
Directions: Use exact numbers. For example, if your answer includes π, e, square root etc, do not replace it by an approximate value.

1. A positive integer n written in base b is 25_{b}. If $2 n$ is 52_{b}, what is b ?
2. Given that 23^{100} is 137 digit number, find the number of digits of 23^{23}.
3. Let α and β be two solutions of $(x+2020)^{2}-(x+2020)+2019=0$. Find $(\alpha+2019)(\beta+2019)$.
4. Let P be the point $(3,1)$. Let Q be the reflection of P across the x - axis, let R be the reflection of Q about the line $y=x$ and let S be the reflection of R through the origin. What is the area of the quadrilateral $P Q S R$?
5. Assume that clock hands move continuously on the clock. Find the first (earliest) time and the last time when two hands overlap strictly between 12:00 AM and 12:00 PM. Write the answer as pairs (x, y), where x is hours and y is minutes.
6. Let P be a point on the circle $x^{2}+y^{2}=9$. Find the length of locus of the centroid of $\triangle P Q R$ where $Q=(2,5)$ and $R=(7,4)$.
7. Square $A B C D$ has side length 2. A semicircle with diameter $A B$ is constructed inside the square, and the tangent to semicircle from C intersects side $A D$ at E. What is the length of $C E$?

8. Consider a triangle $\triangle A B C$ with $\angle B=90^{\circ}$. Suppose the distances from B to the quadrisection points D, E and F of $\overline{A C}$ are $\cos x, x$ and $\sin x$ respectively. Find x.

9. The following map shows traffic system for two places A and B. Every square has side that equals 1 mile. Each car travels along horizontal and vertical grid lines. Find the number of shortest paths from A to B if one cannot cross the construction area.

10. Solve the equation $4 \cdot 9^{x-1}=3 \sqrt{2^{2 x+1}}$.
11. The line $y=k,-1<k<0$, intersects two graphs $y=\sin x$ and $y=\cos x$ at four points $(0 \leq x<2 \pi)$. Let a, b, c and d be the x-coordinates of the intersections. Find

$$
\sin \left(\frac{a+b+c+d}{4}\right)+\cos \left(\frac{a+b+c+d}{4}\right)+\tan \left(\frac{a+b+c+d}{4}\right)
$$

12. Find the number of subsets of $\{1,2,3, \cdots, 8\}$ that contain at least four consecutive numbers.
13. In the figure below, there are six non-overlapping congruent isosceles triangles. The sides of each triangle are 2, 2 and 1 . Find the distance from A to B.

14. Let $X=\{1,2, \cdots, 10\}$. Find the number of one-to-one functions f with domain X and range X such that x and $f(x)$ are mutually prime for every x in X.
15. Find $a+b+c+d$ if a, b, c and d satisfy the following conditions.

A: $10 \leq a, b, c, d \leq 20$
B: $a b-c d=28$
C: $a d-b c=110$
16. Find the smallest number n such that the following statement is true. A collection of n points on the coordinate plane with integer coordinates contains a pair of points such that the trisection points of the line joining those two points have integer coordinates.
17. Ninety nine people $p_{1}, p_{2}, \cdots p_{99}$ shake hands with each other. It was observed that each person p_{i} shook hands with precisely i people for every $i, 1 \leq i \leq 98$. Find the number of people that p_{99} shook hands.
18. How many possible distinct integer solutions (a, b, c) does the equation have?

$$
\begin{equation*}
\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{a b c}=1 \tag{1}
\end{equation*}
$$

19. Let $x \neq 1$ be such that

$$
\lfloor x\rfloor+\frac{2022}{\lfloor x\rfloor}=x^{2}+\frac{2022}{x^{2}}
$$

where $\lfloor x\rfloor$ denotes the largest integer less than or equal to x. Find x^{2}.
20. Let A be a vertex of regular hexagon with side 1 . Let P, Q, R and S be points on the four sides not containing A as in the figure. Find the minimum of $A P+P Q+Q R+R S+S A$.

21. Find all integers $n \neq-1$ so that

$$
\left(1+\frac{1}{n}\right)^{n+1}=\left(1+\frac{1}{2019}\right)^{2019}
$$

