CD EXAM
 Texas A\&M High School Math Contest
 November 9th, 2019

Directions: Use exact numbers. For example, if your answer includes π, e, square root etc, do not replace it by an approximate value.

1. A positive integer n written in base b is 25_{b}. If $2 n$ is 52_{b}, what is b ?

Sol.

$$
\begin{aligned}
& \text { Solution: } n=2 b+5 \\
& \qquad 2 n=4 b+10=5 b+2 \\
& b=8
\end{aligned}
$$

Ans. 8
2. Given that 23^{100} is a 137 digit number, find the number of digits of 23^{23}.

Sol. Since 23^{100} is a 137 digit number, we have $136 \leq \log 23^{100}<137$. This implies that

$$
1.36 \leq \log 23<1.37
$$

So 23^{23} is a 32 digit number because $31.28=23(1.36) \leq \log 23^{23}<23(1.37)=31.51$.
Ans. 32
3. Let α and β be two solutions of $(x+2020)^{2}-(x+2020)+2019=0$. Find $(\alpha+2019)(\beta+2019)$.

Sol. The equation can be written as

$$
x^{2}-(1-2 \cdot 2020) x+2020^{2}-2020+2019=0
$$

If α and β are the roots, we have

$$
\alpha+\beta=1-2 \cdot 2020 \quad \text { and } \quad \alpha \beta=2020^{2}-1
$$

Thus we have

$$
\begin{aligned}
(\alpha+2019)(\beta+2019) & =\alpha \beta+2019(\alpha+\beta)+2019^{2} \\
& =2020^{2}-1+2019(1-2 \cdot 2020)+2019^{2} \\
& =(2020+1)(2020-1)+2019(1-2 \cdot 2020)+2019^{2} \\
& =2019(2021+1-2 \cdot 2020+2019) \\
& =2019 \cdot 1=2019
\end{aligned}
$$

Ans. 2019
4. Let P be the point $(3,1)$. Let Q be the reflection of P across the x - axis, let R be the reflection of Q about the line $y=x$ and let S be the reflection of R through the origin. What is the area of the quadrilateral $P Q S R$?
Sol. We want to find the area of quadrilateral $P Q S R$ for $P(3,1), Q(3,-1), R(-1,3)$ and $S(1,-3)$. We can cut the quadrilateral by a vertical line $x=1$. The intersection of $\overline{P R}$ and $x=1$ is $T(1,2)$. With the base $S T=5$ of both the trapezoid $T S Q R$ and $\triangle T R S$, and $P Q=2$, the area is

$$
\frac{5 \cdot 2}{2}+\frac{2(2+5)}{2}=5+7=12
$$

Ans. 12
5. Assume that clock hands move continuously on the clock. Find the first (earliest) time and the last time when two hands overlap strictly between 12:00 AM and 12:00 PM. Write the answer as pairs (x, y), where x is hours and y is minutes.
Sol. We read the angle clock-wise. Each minute increases the angle of minute hand by $\left(\frac{360}{60}\right)^{\circ}=6^{\circ}$. Since 60 minutes contributes 30° to hour hand's angle, the hour hand moves $\left(\frac{30}{60}\right)^{\circ}=\left(\frac{1}{2}\right)^{\circ}$ in each minute. Let θ_{1} and θ_{2} be the angle of hour hand and minute hand from 12 o'clock respectively. If the time is x hour and y minute,

$$
\theta_{1}=30 x+\frac{y}{2} \quad \text { and } \quad \theta_{2}=6 y
$$

We solve the equation $\theta_{1}=\theta_{2}$ with the condition that $x=0,1,2, \cdots, 11$. The first time is when $x=1$ and $y=\frac{60}{11}$, the last time is when $x=10$ and $y=\frac{600}{11}$.
Ans. $(x, y)=\left(1, \frac{60}{11}\right)$ and $(x, y)=\left(10, \frac{600}{11}\right)$
6. Let P be a point on the circle $x^{2}+y^{2}=9$. Find the length of locus of the centroid of $\triangle P Q R$ where $Q=(2,5)$ and $R=(7,4)$.
Sol. If C is the centroid of $\triangle P Q R$ and M is the middle of the segment $Q R$, then $M C: M P=1: 3$. It follows that the locus is obtained from the circle by the dilation (homothety) with scale factor $1 / 3$ with center in M. Since the radius of the circle is 3 , the locus is a circle of radius 1 , hence its length is 2π.
Ans. 2π
7. Square $A B C D$ has side length 2. A semicircle with diameter $A B$ is constructed inside the square, and the tangent to semicircle from C intersects side $A D$ at E. What is the length of $C E$?

Sol. Let F be the point at which $C E$ is tangent to the semicircle, and let G be the midpoint of $A B$ as in the figure below. Because $C F$ and $C B$ are both tangents to the semicircle, $C F=C B=2$. Similarly, $E A=E F$. Let $x=E A$. The Pythagorean Theorem applied to the triangle $\triangle C D E$ gives $(2-x)^{2}+2^{2}=(2+x)^{2}$. It follows that $x=1 / 2$ and $C E=2+x=5 / 2$.

Ans. $\frac{5}{2}$
8. Consider a triangle $\triangle A B C$ with $\angle B=90^{\circ}$. Suppose the distances from B to the quadrisection points D, E and F of $\overline{A C}$ are $\cos x, x$ and $\sin x$ respectively. Find x.

Sol. Observed that $\overline{E A}, \overline{E B}$ and $\overline{E C}$ are radii of the circumscribed circle of $\triangle A B C$. So $2 x=A C$. To find $A C$, let $B A=a$ and $B C=c$. Draw lines $\overline{A^{\prime} D}$ and $\overline{F C^{\prime}}$ as in the figure below. Apply Pythagorean theorem to $\triangle B F C^{\prime}, \triangle A^{\prime} D B$ and $\triangle A B C$ to have

$$
\begin{aligned}
\left(\frac{a}{4}\right)^{2}+\left(\frac{3 c}{4}\right)^{2} & =\sin ^{2} x \\
\left(\frac{3 a}{4}\right)^{2}+\left(\frac{c}{4}\right)^{2} & =\cos ^{2} x \\
a^{2}+c^{2} & =A C^{2}
\end{aligned}
$$

Adding the first two identities we have

$$
\frac{10}{16}\left(a^{2}+c^{2}\right)=1
$$

So we have $A C^{2}=\frac{16}{10}$ or $A C=\frac{4}{\sqrt{10}}=\frac{4 \sqrt{10}}{10}$. Thus $x=\frac{2 \sqrt{10}}{10}$.
Ans. $\frac{\sqrt{10}}{5}$
9. The following map shows traffic system for two places A and B. Every square has side that equals 1 mile. Each car travels along horizontal and vertical grid lines. Find the number of shortest paths from A to B if one cannot cross the construction area.

Sol. Observe that each shortest path from A to B must pass D (see the figure below). There are only two types of paths from A to $D: A \rightarrow C \rightarrow D$ and $A \rightarrow C^{\prime} \rightarrow D$. Let h and v denote moving horizontally and vertically by 1 unit respectively. The shortest path from A to C is determined by a word of length 5 with $2 h$'s and $3 v$'s. The number of such words is $\frac{5!}{2!3!}=10$. Similarly there are $\frac{4!}{3!1!}=4$ paths from C to D. Thus there are $10 \cdot 4=40$ shortest paths of type $A \rightarrow C \rightarrow D$. Since there is only one path from C^{\prime} to D, there are $\frac{5!}{1!4!}=5$ paths from A to D that pass C^{\prime}, and so $40+5=45$ paths from A to D. By the same manner, the number of paths $D \rightarrow E \rightarrow B$ is $1 \cdot \frac{6!}{2!4!}=15$. Therefore the number of shortest paths from A to B is $45 \cdot 15=675$.

Ans. 675
10. Solve the equation $4 \cdot 9^{x-1}=3 \sqrt{2^{2 x+1}}$.

Sol. The equation can be written as

$$
2^{2} \cdot 3^{2(x-1)}=3 \cdot 2^{(2 x+1) / 2}
$$

Both sides of this equation are positive, thus we can apply $\log _{2}$ to both sides:

$$
\log _{2}\left(2^{2} \cdot 3^{2(x-1)}\right)=\log _{2}\left(3 \cdot 2^{(2 x+1) / 2}\right)
$$

Using the properties of logarithms we get

$$
\begin{aligned}
\log _{2} 2^{2}+\log _{2} 3^{2(x-1)} & =\log _{2} 3+\log _{2} 2^{(2 x+1) / 2} \\
2+2(x-1) \log _{2} 3 & =\log _{2} 3+\frac{2 x+1}{2} \\
2+2 x \log _{2} 3-2 \log _{2} 3 & =\log _{2} 3+x+\frac{1}{2} \\
x\left(2 \log _{2} 3-1\right) & =3 \log _{2} 3-\frac{3}{2} \\
x\left(2 \log _{2} 3-1\right) & =\frac{3}{2}\left(2 \log _{2} 3-1\right) \\
x & =\frac{3}{2} .
\end{aligned}
$$

Ans. $x=\frac{3}{2}$
11. The line $y=k,-1<k<0$, intersects two graphs $y=\sin x$ and $y=\cos x$ at four points $(0 \leq x<2 \pi)$. Let a, b, c and d be the x-coordinates of the intersections. Find

$$
\sin \left(\frac{a+b+c+d}{4}\right)+\cos \left(\frac{a+b+c+d}{4}\right)+\tan \left(\frac{a+b+c+d}{4}\right) .
$$

Sol. Let a and b be the x-coordinates of the intersections of $y=k$ and $y=\sin x$, and let c and d be the x-coordinates of intersections of $y=k$ and $y=\cos x$. By the symmetry of $y=\sin x$ and $y=\cos x$, we see that

$$
\frac{a+b}{2}=\frac{3 \pi}{2} \quad \text { and } \quad \frac{c+d}{2}=\pi .
$$

Thus the desired sum becomes

$$
\sin \left(\frac{3 \pi+2 \pi}{4}\right)+\cos \left(\frac{3 \pi+2 \pi}{4}\right)+\tan \left(\frac{3 \pi+2 \pi}{4}\right)=\sin \left(\frac{5 \pi}{4}\right)+\cos \left(\frac{5 \pi}{4}\right)+\tan \left(\frac{5 \pi}{4}\right)=1-\sqrt{2} .
$$

Ans. $1-\sqrt{2}$
12. Find the number of subsets of $\{1,2,3, \cdots, 8\}$ that contain at least four consecutive numbers.

Sol. We can start with the subset $A=\{1,2,3,4\}$. We may add or drop elements $5,6,7$ and 8 one by one to form a subset containing at least $1,2,3$ and 4 . In this case we have 2^{4} ways to form a subset containing A. Next consider a subset containing $\{2,3,4,5\}$. If it contains 1 , we already counted this
subset. We can add elements 6,7 and 8 one by one. This yields 2^{3} ways. Similarly, we can count the number of subsets that contains at least $\{3,4,5,6\}$ by adding the remaining 3 elements 1,7 and 8. This also yields 2^{3} ways. We have the same 2^{3} ways to form a subset containing $\{4,5,6,7\}$ or $\{5,6,7,8\}$. Consequently the number of desired subsets is

$$
2^{4}+2^{3}+2^{3}+2^{3}+2^{3}=48
$$

Ans. 48
13. In the figure below, there are six non-overlapping congruent isosceles triangles. The sides of each triangle are 2, 2 and 1 . Find the distance from A to B.

Sol. Let O be the origin, then $\overline{O P}$ is along the x-axis and so $P=(2,0)$ in the figure below. Thus the x-coordinate of R is $1 / 2$, and the altitude y at R satisfies $y^{2}+(1 / 2)^{2}=4$, which implies

$$
R=\left(\frac{1}{2}, \frac{\sqrt{15}}{2}\right) \text { and } Q=\left(\frac{5}{2}, \frac{\sqrt{15}}{2}\right)
$$

Let M and N be the midponts of $\overline{O R}$ and $\overline{P Q}$ respectively. Then

$$
M=\left(\frac{1}{4}, \frac{\sqrt{15}}{4}\right) \text { and } N=\left(\frac{9}{4}, \frac{\sqrt{15}}{4}\right) .
$$

Since $\angle P O B=\angle P O R$ we see, by the symmetry, that the point B is the reflection of M about x-axis. Similarly, A is the reflection of N about $\overline{R Q}$. Thus

$$
B=\left(\frac{1}{4},-\frac{\sqrt{15}}{4}\right) \text { and } A=\left(\frac{9}{4}, \frac{3 \sqrt{15}}{4}\right)
$$

Therefore $|A B|=\sqrt{19}$ since

$$
|A B|^{2}=\left(\frac{9}{4}-\frac{1}{4}\right)^{2}+\left(\frac{3 \sqrt{15}}{4}+\frac{\sqrt{15}}{4}\right)^{2}=19
$$

Ans. $\sqrt{19}$
14. Let $X=\{1,2, \cdots, 10\}$. Find the number of one-to-one functions f with domain X and range X such that x and $f(x)$ are mutually prime for every x in X.
Sol. For every even number $x, f(x)$ must be odd. Being one-to-one, f maps distinct even numbers to distinct odd numbers. Consequently f maps the remaining 5 odd numbers to 5 even numbers. Moreover, f maps distinct odd numbers to distinct even numbers with the condition

$$
f(3) \neq 6, f(5) \neq 10 \text { and } f(9) \neq 6
$$

If $f(3)=10$, then we have only three possibilities for $f(9)$, i.e., $f(9)=2, f(9)=4$ or $f(9)=8$. There is no restriction for remaining odd numbers 1,5 and 7 to be mapped to distinct remaining even numbers. The same counting yields that we have

$$
2 \times 3 \times 3!
$$

ways if either $f(3)=10$ or $f(9)=10$.
If $f(3) \neq 10$ and $f(9) \neq 10, f(3)$ and $f(9)$ must belong to $\{2,4,8\}$. Then $f(5)$ can be mapped to one of remaining 2 even numbers. There is no restriction for 1 and 7 be to mapped to the remaining two even numbers. We have

$$
(3 \times 2) \times 2 \times 2!
$$

ways for this case.
Observe that the restriction of f on the odd numbers determine one-to-one correspondence between $\{2,4,6,8,10\}$ and $\{1,3,5,7,9\}$. This means that there are precisely

$$
2 \times 3 \times 3!+(3 \times 2) \times 2 \times 2!=60
$$

ways to define f restricted on the even numbers. Therefore the number of possible one-to-one functions $f: X \rightarrow X$ are

$$
60^{2}=3600
$$

Ans. 3600
15. Find $a+b+c+d$ if four integers a, b, c and d satisfy the following conditions.

A: $10 \leq a, b, c, d \leq 20$
B: $a b-c d=58$
C: $a d-b c=110$

Sol. By taking the difference of two equations in B and C, we have

$$
(a d-b c)-(a b-c d)=110-58 \quad \Leftrightarrow \quad(a+c)(d-b)=52
$$

Since $20 \leq a+c \leq 40, a+c$ must be 26 which is the only divisor of 52 between 20 and 40 . Consequently $d-b=2$. Plugging $c=26-a$ and $d=2+b$ back into B , we have

$$
2 a b-26 b+2 a-52=58 \quad \text { or } \quad a b+a-13 b=55 .
$$

Adding -13 to both sides we have

$$
a(b+1)-13(b+1)=42 \quad \text { or } \quad(a-13)(b+1)=42 .
$$

The condition A implies

$$
11 \leq b+1 \leq 21 \quad \text { and } \quad b+2=d \leq 20
$$

Now $11 \leq b+1 \leq 18$ implies that $b+1=14$ which is the only divisor of 42 with that condition. Consequently $a-13=3$. Therefore

$$
a=16, b=13, c=10 \text { and } d=15
$$

and so $a+b+c+d=54$.
Ans. 54
16. Find the smallest number n such that the following statement is true. A collection of n points on the coordinate plane with integer coordinates contains a pair of points such that the trisection points of the line joining those two points have integer coordinates.
Sol. Let $P(a, b)$ and $Q(x, y)$ be two points with integer coordinates. The trisection point T of $\overline{P Q}$ that is closer to P is

$$
T=\left(\frac{2 a+x}{3}, \frac{2 b+y}{3}\right)
$$

Observe that T has integer coordinates if and only if $x \equiv a(\bmod 3)$ and $y \equiv b(\bmod 3)$, i.e., both $x-a$ and $y-b$ are multiples of 3 . If $2 a+x=3 k$ for some integer k, then $x-a=(2 a+x)-3 a=3 k-3 a=$ $3(k-a)$. Conversely, if $x-a=3 k$ for some integer k, then $2 a+x=2 a+(3 k+a)=3(k+1)$, and so the x-coordinate of T is an integer. Similar argument proves the statement for the y-coordinate of T.

We want to find the smallest number n such that a collection of n integer points contains a pair of points where the differences in both coordinates are multiples of 3 . Every integer, when divided by 3 , leaves remainder 0,1 , or 2 . This means that there are $3 \times 3=9$ types of remainder pairs in x - and y-coordinates. This implies that, if one takes a collection of 10 integer coordinate points, it contains at least a pair of points with the same type of remainder pairs, hence the differences in both coordinates are multiples of 3 .
Ans. $n=10$
17. Ninety nine people $p_{1}, p_{2}, \cdots, p_{99}$ shake hands with each other. It was observed that each person p_{i} shook hands with precisely i people for every $i, 1 \leq i \leq 98$. Find the number of people that p_{99} shook hands.
Sol. The person p_{98} shook hands with 98 people. This means that p_{98} shook hands with all people except p_{98}. So p_{1} shook hands with p_{98}, which is the only person with whom p_{1} shook hands. This implies that p_{1} didn't shake hands with p_{97}. We see that p_{97} shook hands all people but p_{1} and p_{97}. Similarly, p_{2} shook hands only with p_{98} and p_{97}. Consequently p_{97} shook hands with everyone but p_{1} and p_{97}. By applying analogous argument we can check that all of $p_{98}, p_{97}, \cdots, p_{50}$ shook hands with p_{99} and that all of $p_{1}, p_{2}, \cdots, p_{49}$ didn't shake hands with p_{99}. Therefore p_{99} shook hands with 49 people.
Ans. 49
18. How many possible distinct integer solutions (a, b, c) does the equation have?

$$
\begin{equation*}
\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{a b c}=1 \tag{1}
\end{equation*}
$$

Sol. We may assume that $a>b>c$. Multiply by c and rewrite (1) as

$$
\begin{equation*}
\frac{c}{a}+\frac{c}{b}+\frac{1}{a b}=c-1 \tag{2}
\end{equation*}
$$

First observe that left hand side of (2) is positive and less than 3 ;

$$
0<\frac{c}{a}+\frac{c}{b}+\frac{1}{a b}<1+1+1
$$

Since the right hand side of (2) is non-negative integer, the left hand side is either 1 or 2 . Consequently $c=2$ or $c=3$.
Case I: $c=2$. Plug $c=2$ in (1) and multiply $2 a b$ to have

$$
2 a+2 b+1=a b \Rightarrow a(b-2)-2(b-2)=5 \Rightarrow(a-2)(b-2)=5
$$

Since 5 is prime and $a-2>b-2$, we must have $a-2=5$ and $b-2=1$. This yields $(a, b, c)=(7,3,2)$. Case II: $c=3$. We have

$$
\frac{3}{a}+\frac{3}{b}+\frac{1}{a b}=2
$$

One can check that the left hand side is less than 2 . Since $a \geq 5$ and $b \geq 4$, we have

$$
\frac{3}{a}+\frac{3}{b}+\frac{1}{a b} \leq \frac{3}{5}+\frac{3}{4}+\frac{1}{20}=\frac{28}{20}
$$

This means that the given equation has no solution if $c=3$.
Thus all possible triples (a, b, c) are

$$
(7,3,2),(7,2,3),(3,7,2),(3,2,7),(2,7,3) \text { and }(2,3,7)
$$

Ans. 6
19. Let $x \neq 1$ be such that

$$
\lfloor x\rfloor+\frac{2022}{\lfloor x\rfloor}=x^{2}+\frac{2022}{x^{2}}
$$

where $\lfloor x\rfloor$ denotes the largest integer less than or equal to x. Find x^{2}.
Sol. Every real number x belongs to an interval $[t, t+1$) for some integer t. Letting $\lfloor x\rfloor=t$, we can rewrite the given equation as

$$
t+\frac{2022}{t}=x^{2}+\frac{2022}{x^{2}} \Rightarrow\left(x^{2}\right)^{2}-\left(t+\frac{2022}{t}\right) x^{2}+2022=0
$$

Thus $x^{2}=t$ or $x^{2}=\frac{2022}{t}$.
Case I. If $x^{2}=\lfloor x\rfloor$, the only possible solution is $x=1$ since $x \neq 0$.
Case II. If $x^{2}=\frac{2022}{\lfloor x\rfloor}$, then $x^{2}\lfloor x\rfloor=2022$. The inequality $12 \cdot 12^{2}=1728<2022<13 \cdot 13^{2}=2197$ suggests $\lfloor x\rfloor=12$. Indeed,

$$
(168.5) 12=2022
$$

Thus we have $\lfloor x\rfloor=12$ and $x^{2}=168.5$, which is the only solution. Therefore $x^{2}=168.5(x \neq 1)$.
Ans. $x^{2}=168.5=\frac{337}{2}$
20. Let A be a vertex of regular hexagon with side 1 . Let P, Q, R and S be points on the four sides not containing A as in the figure. Find the minimum of $A P+P Q+Q R+R S+S A$.

Sol. We can use reflections to find the shortest path. Let P_{1} be the reflection of A about the vertical line containing P, as shown in the figure below. Since $A P=P_{1} P$, we have $A P+P Q=P_{1} P+P Q \geq$ $P_{1} Q$. Applying similar inequalities we have

$$
\begin{array}{r}
A P+P Q+Q R \geq P_{2} Q+Q R \geq P_{2} R, \\
A P+P Q+Q R+R S \geq P_{3} R+R S \geq P_{3} S \\
A P+P Q+Q R+R S+S A \geq A S+S P_{4} \geq A P_{4}
\end{array}
$$

Indeed, the minimum is given by $A P_{4}$. To find $A P_{4}$, we apply the Pythagorean theorem to $\triangle A P_{4} P_{5}$. Since $A P_{5}=3 \frac{\sqrt{3}}{2}$ and $P_{4} P_{5}=4+\frac{1}{2}$, we have

$$
A P_{4}^{2}=\left(\frac{3 \sqrt{3}}{2}\right)^{2}+\left(\frac{9}{2}\right)^{2}=\frac{27}{4}+\frac{81}{4}=\frac{108}{4}=27 .
$$

Thus the minimum is $\sqrt{27}=3 \sqrt{3}$.
Ans. $3 \sqrt{3}$
21. Find all integers $n \neq-1$ so that

$$
\begin{equation*}
\left(1+\frac{1}{n}\right)^{n+1}=\left(1+\frac{1}{2019}\right)^{2019} \tag{3}
\end{equation*}
$$

Sol. We first check that the equation has no positive integer solution. The equation (3) can be written as

$$
\begin{equation*}
\left(\frac{n+1}{n}\right)^{n+1}=\left(\frac{2020}{2019}\right)^{2019} \Leftrightarrow(n+1)^{n+1} 2019^{2019}=n^{n+1} 2020^{2019} . \tag{4}
\end{equation*}
$$

Obviously $n=2019$ is not a solution. If $n=2019$, we must have

$$
2020^{2020} 2019^{2019}=2019^{2020} 2020^{2019} \Rightarrow 2020=2019 .
$$

Notice that the numbers n and $n+1$ have no common divisors greater than 1 . Indeed, any common divisor of n and $n+1$ will also divide $(n+1)-n=1$. Since 2019 and 2020 are mutually prime, 2019^{2019} in the left hand side of (4) must divide n^{n+1} in the right hand side. However, if $n \leq 2018$,

$$
n^{n+1} \leq 2018^{2019}<2019^{2019}
$$

This implies that the equation has no integer solution $0<n \leq 2018$. Similarly, if $2020 \leq n$ then $2021^{2021} \leq(n+1)^{n+1}$, and so 2020^{2019} in the right hand side is not divisible by $(n+1)^{n+1}$. This contradicts that 2019^{2019} is an integer.
Next we consider integer solutions $n \leq-2(n \neq-1,0)$. Let $n=-k(k \geq 2)$ and rewrite (3) to see

$$
\begin{equation*}
\left(1-\frac{1}{k}\right)^{1-k}=\left(1+\frac{1}{2019}\right)^{2019} \Leftrightarrow\left(1+\frac{1}{k-1}\right)^{k-1}=\left(1+\frac{1}{2019}\right)^{2019} . \tag{5}
\end{equation*}
$$

Clearly $k=2020$ satisfies (5) and so $n=-2020$ is a solution of (3).

To show that equation (5) has only one solution $k=2020$, we need to verify that the sequence $a_{n}=\left(1+\frac{1}{n}\right)^{n}$ is strictly increasing, i.e., $a_{n}<a_{n+1}$ for all $1 \leq n$. The inequality is obvious when $n=1$. For $n \geq 2$, one can use binomial expansion directly to compare terms in a_{n} and a_{n+1};

$$
\begin{aligned}
\left(1+\frac{1}{n}\right)^{n} & =1+\frac{n}{1!}\left(\frac{1}{n}\right)+\frac{n(n-1)}{2!}\left(\frac{1}{n}\right)^{2}+\cdots+\binom{n}{k}\left(\frac{1}{n}\right)^{k}+\cdots+\left(\frac{1}{n}\right)^{n}, \\
\left(1+\frac{1}{n+1}\right)^{n+1} & =1+\frac{n+1}{1!}\left(\frac{1}{n+1}\right)+\frac{(n+1) n}{2!}\left(\frac{1}{n+1}\right)^{2}+\cdots+\binom{n+1}{k}\left(\frac{1}{n+1}\right)^{k}+\cdots+\left(\frac{1}{n+1}\right)^{n+1}
\end{aligned}
$$

where $\binom{n}{k}=\frac{n!}{k!(n-k)!}$. The first two terms are identical in both expansions. For all $2 \leq k \leq n$, observe that the $(k+1)^{\text {th }}$ term in a_{n} can be written as

$$
\frac{n(n-1)(n-2) \cdots(n-k+1)}{k!}\left(\frac{1}{n}\right)^{k}=\frac{1}{k!}\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right) \cdots\left(1-\frac{k-1}{n}\right)
$$

which is strictly less than the $(k+1)^{t h}$ term of a_{n+1}

$$
\frac{(n+1) n(n-1) \cdots(n-k+2)}{k!}\left(\frac{1}{n+1}\right)^{k}=\frac{1}{k!}\left(1-\frac{1}{n+1}\right)\left(1-\frac{2}{n+1}\right) \cdots\left(1-\frac{k-1}{n+1}\right)
$$

It follows that $a_{n}<a_{n+1}$. Therefore the equation has the only solution $n=-2020$.
Ans. $n=-2020$

