CD EXAM Texas A&M High School Math Contest November 9th, 2019

Directions: Use exact numbers. For example, if your answer includes π , e, square root etc, do not replace it by an approximate value.

1. A positive integer n written in base b is 25_b . If 2n is 52_b , what is b?

Sol.

Solution:
$$n = 2b + 5$$

 $2n = 4b + 10 = 5b + 2$
 $b = 8$

Ans. 8

2. Given that 23^{100} is a 137 digit number, find the number of digits of 23^{23} . Sol. Since 23^{100} is a 137 digit number, we have $136 \le \log 23^{100} < 137$. This implies that

$$1.36 \le \log 23 < 1.37.$$

So 23^{23} is a 32 digit number because $31.28 = 23(1.36) \le \log 23^{23} < 23(1.37) = 31.51$. Ans. 32

3. Let α and β be two solutions of $(x + 2020)^2 - (x + 2020) + 2019 = 0$. Find $(\alpha + 2019)(\beta + 2019)$. Sol. The equation can be written as

$$x^{2} - (1 - 2 \cdot 2020)x + 2020^{2} - 2020 + 2019 = 0.$$

If α and β are the roots, we have

$$\alpha + \beta = 1 - 2 \cdot 2020$$
 and $\alpha \beta = 2020^2 - 1$.

Thus we have

$$(\alpha + 2019)(\beta + 2019) = \alpha\beta + 2019(\alpha + \beta) + 2019^{2}$$

= 2020² - 1 + 2019(1 - 2 \cdot 2020) + 2019²
= (2020 + 1)(2020 - 1) + 2019(1 - 2 \cdot 2020) + 2019²
= 2019(2021 + 1 - 2 \cdot 2020 + 2019)
= 2019 \cdot 1 = 2019.

Ans. 2019

4. Let P be the point (3, 1). Let Q be the reflection of P across the x- axis, let R be the reflection of Q about the line y = x and let S be the reflection of R through the origin. What is the area of the quadrilateral PQSR?

Sol. We want to find the area of quadrilateral PQSR for P(3, 1), Q(3, -1), R(-1, 3) and S(1, -3). We can cut the quadrilateral by a vertical line x = 1. The intersection of \overline{PR} and x = 1 is T(1, 2). With the base ST = 5 of both the trapezoid TSQR and ΔTRS , and PQ = 2, the area is

$$\frac{5 \cdot 2}{2} + \frac{2(2+5)}{2} = 5 + 7 = 12.$$

Ans. 12

5. Assume that clock hands move continuously on the clock. Find the first (earliest) time and the last time when two hands overlap strictly between 12:00 AM and 12:00 PM. Write the answer as pairs (x, y), where x is hours and y is minutes.

Sol. We read the angle clock-wise. Each minute increases the angle of minute hand by $\left(\frac{360}{60}\right)^{\circ} = 6^{\circ}$. Since 60 minutes contributes 30° to hour hand's angle, the hour hand moves $\left(\frac{30}{60}\right)^{\circ} = \left(\frac{1}{2}\right)^{\circ}$ in each minute. Let θ_1 and θ_2 be the angle of hour hand and minute hand from 12 o'clock respectively. If the time is x hour and y minute,

$$\theta_1 = 30x + \frac{y}{2}$$
 and $\theta_2 = 6y$.

We solve the equation $\theta_1 = \theta_2$ with the condition that $x = 0, 1, 2, \dots, 11$. The first time is when x = 1 and $y = \frac{60}{11}$, the last time is when x = 10 and $y = \frac{600}{11}$.

Ans.
$$(x, y) = (1, \frac{60}{11})$$
 and $(x, y) = (10, \frac{600}{11})$

6. Let P be a point on the circle $x^2 + y^2 = 9$. Find the length of locus of the centroid of $\triangle PQR$ where Q = (2, 5) and R = (7, 4).

Sol. If C is the centroid of $\triangle PQR$ and M is the middle of the segment QR, then MC : MP = 1 : 3. It follows that the locus is obtained from the circle by the dilation (homothety) with scale factor 1/3 with center in M. Since the radius of the circle is 3, the locus is a circle of radius 1, hence its length is 2π .

Ans. 2π

7. Square ABCD has side length 2. A semicircle with diameter AB is constructed inside the square, and the tangent to semicircle from C intersects side AD at E. What is the length of CE?

Sol. Let *F* be the point at which *CE* is tangent to the semicircle, and let *G* be the midpoint of *AB* as in the figure below. Because *CF* and *CB* are both tangents to the semicircle, CF = CB = 2. Similarly, EA = EF. Let x = EA. The Pythagorean Theorem applied to the triangle $\triangle CDE$ gives $(2 - x)^2 + 2^2 = (2 + x)^2$. It follows that x = 1/2 and CE = 2 + x = 5/2.

Ans. $\frac{5}{2}$

8. Consider a triangle $\triangle ABC$ with $\angle B = 90^{\circ}$. Suppose the distances from B to the quadrisection points D, E and F of \overline{AC} are $\cos x$, x and $\sin x$ respectively. Find x.

Sol. Observed that \overline{EA} , \overline{EB} and \overline{EC} are radii of the circumscribed circle of $\triangle ABC$. So 2x = AC. To find AC, let BA = a and BC = c. Draw lines $\overline{A'D}$ and $\overline{FC'}$ as in the figure below. Apply Pythagorean theorem to $\triangle BFC'$, $\triangle A'DB$ and $\triangle ABC$ to have

$$\left(\frac{a}{4}\right)^2 + \left(\frac{3c}{4}\right)^2 = \sin^2 x,$$
$$\left(\frac{3a}{4}\right)^2 + \left(\frac{c}{4}\right)^2 = \cos^2 x,$$
$$a^2 + c^2 = AC^2.$$

Adding the first two identities we have

$$\frac{10}{16}(a^2 + c^2) = 1.$$

So we have $AC^2 = \frac{16}{10}$ or $AC = \frac{4}{\sqrt{10}} = \frac{4\sqrt{10}}{10}$. Thus $x = \frac{2\sqrt{10}}{10}$.
Ans. $\frac{\sqrt{10}}{5}$

9. The following map shows traffic system for two places A and B. Every square has side that equals 1 mile. Each car travels along horizontal and vertical grid lines. Find the number of shortest paths from A to B if one cannot cross the construction area.

Sol. Observe that each shortest path from A to B must pass D (see the figure below). There are only two types of paths from A to $D: A \to C \to D$ and $A \to C' \to D$. Let h and v denote moving horizontally and vertically by 1 unit respectively. The shortest path from A to C is determined by a word of length 5 with 2 h's and 3 v's. The number of such words is $\frac{5!}{2!3!} = 10$. Similarly there are $\frac{4!}{3!1!} = 4$ paths from C to D. Thus there are $10 \cdot 4 = 40$ shortest paths of type $A \to C \to D$. Since there is only one path from C' to D, there are $\frac{5!}{1!4!} = 5$ paths from A to D that pass C', and so 40 + 5 = 45 paths from A to D. By the same manner, the number of paths $D \to E \to B$ is $1 \cdot \frac{6!}{2!4!} = 15$. Therefore the number of shortest paths from A to B is $45 \cdot 15 = 675$.

Ans. 675

10. Solve the equation $4 \cdot 9^{x-1} = 3\sqrt{2^{2x+1}}$.

Sol. The equation can be written as

$$2^2 \cdot 3^{2(x-1)} = 3 \cdot 2^{(2x+1)/2}.$$

Both sides of this equation are positive, thus we can apply \log_2 to both sides:

$$\log_2\left(2^2 \cdot 3^{2(x-1)}\right) = \log_2\left(3 \cdot 2^{(2x+1)/2}\right).$$

Using the properties of logarithms we get

$$\log_2 2^2 + \log_2 3^{2(x-1)} = \log_2 3 + \log_2 2^{(2x+1)/2}$$
$$2 + 2(x-1)\log_2 3 = \log_2 3 + \frac{2x+1}{2}$$
$$2 + 2x\log_2 3 - 2\log_2 3 = \log_2 3 + x + \frac{1}{2}$$
$$x(2\log_2 3 - 1) = 3\log_2 3 - \frac{3}{2}$$
$$x(2\log_2 3 - 1) = \frac{3}{2}(2\log_2 3 - 1)$$
$$x = \frac{3}{2}.$$

Ans. $x = \frac{3}{2}$

11. The line y = k, -1 < k < 0, intersects two graphs $y = \sin x$ and $y = \cos x$ at four points $(0 \le x < 2\pi)$. Let a, b, c and d be the x-coordinates of the intersections. Find

$$\sin\left(\frac{a+b+c+d}{4}\right) + \cos\left(\frac{a+b+c+d}{4}\right) + \tan\left(\frac{a+b+c+d}{4}\right).$$

Sol. Let a and b be the x-coordinates of the intersections of y = k and $y = \sin x$, and let c and d be the x-coordinates of intersections of y = k and $y = \cos x$. By the symmetry of $y = \sin x$ and $y = \cos x$, we see that

$$\frac{a+b}{2} = \frac{3\pi}{2} \quad \text{and} \quad \frac{c+d}{2} = \pi$$

Thus the desired sum becomes

$$\sin\left(\frac{3\pi+2\pi}{4}\right) + \cos\left(\frac{3\pi+2\pi}{4}\right) + \tan\left(\frac{3\pi+2\pi}{4}\right) = \sin\left(\frac{5\pi}{4}\right) + \cos\left(\frac{5\pi}{4}\right) + \tan\left(\frac{5\pi}{4}\right) = 1 - \sqrt{2}.$$
Ans. $1 - \sqrt{2}$

12. Find the number of subsets of $\{1, 2, 3, \dots, 8\}$ that contain at least four consecutive numbers.

Sol. We can start with the subset $A = \{1, 2, 3, 4\}$. We may add or drop elements 5, 6, 7 and 8 one by one to form a subset containing at least 1, 2, 3 and 4. In this case we have 2^4 ways to form a subset containing A. Next consider a subset containing $\{2, 3, 4, 5\}$. If it contains 1, we already counted this

subset. We can add elements 6,7 and 8 one by one. This yields 2^3 ways. Similarly, we can count the number of subsets that contains at least $\{3, 4, 5, 6\}$ by adding the remaining 3 elements 1,7 and 8. This also yields 2^3 ways. We have the same 2^3 ways to form a subset containing $\{4, 5, 6, 7\}$ or $\{5, 6, 7, 8\}$. Consequently the number of desired subsets is

$$2^4 + 2^3 + 2^3 + 2^3 + 2^3 = 48.$$

Ans. 48

13. In the figure below, there are six non-overlapping congruent isosceles triangles. The sides of each triangle are 2, 2 and 1. Find the distance from A to B.

Sol. Let O be the origin, then \overline{OP} is along the x-axis and so P = (2,0) in the figure below. Thus the x-coordinate of R is 1/2, and the altitude y at R satisfies $y^2 + (1/2)^2 = 4$, which implies

$$R = \left(\frac{1}{2}, \frac{\sqrt{15}}{2}\right)$$
 and $Q = \left(\frac{5}{2}, \frac{\sqrt{15}}{2}\right)$

Let M and N be the midponts of \overline{OR} and \overline{PQ} respectively. Then

$$M = \left(\frac{1}{4}, \frac{\sqrt{15}}{4}\right)$$
 and $N = \left(\frac{9}{4}, \frac{\sqrt{15}}{4}\right)$.

Since $\angle POB = \angle POR$ we see, by the symmetry, that the point *B* is the reflection of *M* about *x*-axis. Similarly, *A* is the reflection of *N* about \overline{RQ} . Thus

$$B = \left(\frac{1}{4}, -\frac{\sqrt{15}}{4}\right)$$
 and $A = \left(\frac{9}{4}, \frac{3\sqrt{15}}{4}\right)$

Therefore $|AB| = \sqrt{19}$ since

$$|AB|^{2} = \left(\frac{9}{4} - \frac{1}{4}\right)^{2} + \left(\frac{3\sqrt{15}}{4} + \frac{\sqrt{15}}{4}\right)^{2} = 19.$$

Ans. $\sqrt{19}$

14. Let $X = \{1, 2, \dots, 10\}$. Find the number of one-to-one functions f with domain X and range X such that x and f(x) are mutually prime for every x in X.

Sol. For every even number x, f(x) must be odd. Being one-to-one, f maps distinct even numbers to distinct odd numbers. Consequently f maps the remaining 5 odd numbers to 5 even numbers. Moreover, f maps distinct odd numbers to distinct even numbers with the condition

$$f(3) \neq 6, \ f(5) \neq 10 \text{ and } f(9) \neq 6.$$

If f(3) = 10, then we have only three possibilities for f(9), i.e., f(9) = 2, f(9) = 4 or f(9) = 8. There is no restriction for remaining odd numbers 1, 5 and 7 to be mapped to distinct remaining even numbers. The same counting yields that we have

$$2 \times 3 \times 3!$$

ways if either f(3) = 10 or f(9) = 10.

If $f(3) \neq 10$ and $f(9) \neq 10$, f(3) and f(9) must belong to $\{2, 4, 8\}$. Then f(5) can be mapped to one of remaining 2 even numbers. There is no restriction for 1 and 7 be to mapped to the remaining two even numbers. We have

$$(3 \times 2) \times 2 \times 2!$$

ways for this case.

Observe that the restriction of f on the odd numbers determine one-to-one correspondence between $\{2, 4, 6, 8, 10\}$ and $\{1, 3, 5, 7, 9\}$. This means that there are precisely

$$2 \times 3 \times 3! + (3 \times 2) \times 2 \times 2! = 60$$

ways to define f restricted on the even numbers. Therefore the number of possible one-to-one functions $f: X \to X$ are

$$60^2 = 3600.$$

Ans. 3600

15. Find a + b + c + d if four integers a, b, c and d satisfy the following conditions.

A: $10 \le a, b, c, d \le 20$ B: ab - cd = 58C: ad - bc = 110 **Sol.** By taking the difference of two equations in B and C, we have

$$(ad - bc) - (ab - cd) = 110 - 58 \quad \Leftrightarrow \quad (a + c)(d - b) = 52.$$

Since $20 \le a+c \le 40$, a+c must be 26 which is the only divisor of 52 between 20 and 40. Consequently d-b=2. Plugging c=26-a and d=2+b back into B, we have

$$2ab - 26b + 2a - 52 = 58$$
 or $ab + a - 13b = 55$.

Adding -13 to both sides we have

$$a(b+1) - 13(b+1) = 42$$
 or $(a-13)(b+1) = 42$.

The condition A implies

 $11 \le b+1 \le 21$ and $b+2 = d \le 20$.

Now $11 \le b + 1 \le 18$ implies that b + 1 = 14 which is the only divisor of 42 with that condition. Consequently a - 13 = 3. Therefore

$$a = 16, b = 13, c = 10 \text{ and } d = 15,$$

and so a + b + c + d = 54.

Ans. 54

16. Find the smallest number n such that the following statement is true. A collection of n points on the coordinate plane with integer coordinates contains a pair of points such that the trisection points of the line joining those two points have integer coordinates.

Sol. Let P(a, b) and Q(x, y) be two points with integer coordinates. The trisection point T of PQ that is closer to P is

$$T = \left(\frac{2a+x}{3}, \frac{2b+y}{3}\right)$$

Observe that T has integer coordinates if and only if $x \equiv a \pmod{3}$ and $y \equiv b \pmod{3}$, i.e., both x-aand y-b are multiples of 3. If 2a+x=3k for some integer k, then x-a=(2a+x)-3a=3k-3a=3(k-a). Conversely, if x-a=3k for some integer k, then 2a+x=2a+(3k+a)=3(k+1), and so the x-coordinate of T is an integer. Similar argument proves the statement for the y-coordinate of T.

We want to find the smallest number n such that a collection of n integer points contains a pair of points where the differences in both coordinates are multiples of 3. Every integer, when divided by 3, leaves remainder 0, 1, or 2. This means that there are $3 \times 3 = 9$ types of remainder pairs in x- and y-coordinates. This implies that, if one takes a collection of 10 integer coordinate points, it contains at least a pair of points with the same type of remainder pairs, hence the differences in both coordinates are multiples of 3.

Ans. *n* = 10

17. Ninety nine people p_1, p_2, \dots, p_{99} shake hands with each other. It was observed that each person p_i shook hands with precisely *i* people for every *i*, $1 \leq i \leq 98$. Find the number of people that p_{99} shook hands.

Sol. The person p_{98} shook hands with 98 people. This means that p_{98} shook hands with all people except p_{98} . So p_1 shook hands with p_{98} , which is the only person with whom p_1 shook hands. This implies that p_1 didn't shake hands with p_{97} . We see that p_{97} shook hands all people but p_1 and p_{97} . Similarly, p_2 shook hands only with p_{98} and p_{97} . Consequently p_{97} shook hands with everyone but p_1 and p_{97} . By applying analogous argument we can check that all of $p_{98}, p_{97}, \dots, p_{50}$ shook hands with p_{99} and that all of p_1, p_2, \dots, p_{49} didn't shake hands with p_{99} . Therefore p_{99} shook hands with 49 people.

Ans. 49

18. How many possible distinct integer solutions (a, b, c) does the equation have?

$$\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{abc} = 1 \tag{1}$$

Sol. We may assume that a > b > c. Multiply by c and rewrite (1) as

$$\frac{c}{a} + \frac{c}{b} + \frac{1}{ab} = c - 1.$$
 (2)

First observe that left hand side of (2) is positive and less than 3;

$$0 < \frac{c}{a} + \frac{c}{b} + \frac{1}{ab} < 1 + 1 + 1$$

Since the right hand side of (2) is non-negative integer, the left hand side is either 1 or 2. Consequently c = 2 or c = 3.

Case I: c = 2. Plug c = 2 in (1) and multiply 2ab to have

$$2a + 2b + 1 = ab \Rightarrow a(b-2) - 2(b-2) = 5 \Rightarrow (a-2)(b-2) = 5.$$

Since 5 is prime and a-2 > b-2, we must have a-2 = 5 and b-2 = 1. This yields (a, b, c) = (7, 3, 2). Case II: c = 3. We have

$$\frac{3}{a} + \frac{3}{b} + \frac{1}{ab} = 2.$$

One can check that the left hand side is less than 2. Since $a \ge 5$ and $b \ge 4$, we have

$$\frac{3}{a} + \frac{3}{b} + \frac{1}{ab} \le \frac{3}{5} + \frac{3}{4} + \frac{1}{20} = \frac{28}{20}.$$

This means that the given equation has no solution if c = 3. Thus all possible triples (a, b, c) are

$$(7,3,2), (7,2,3), (3,7,2), (3,2,7), (2,7,3)$$
 and $(2,3,7)$.

Ans. 6

19. Let $x \neq 1$ be such that

$$\lfloor x \rfloor + \frac{2022}{\lfloor x \rfloor} = x^2 + \frac{2022}{x^2}$$

where |x| denotes the largest integer less than or equal to x. Find x^2 .

Sol. Every real number x belongs to an interval [t, t+1) for some integer t. Letting $\lfloor x \rfloor = t$, we can rewrite the given equation as

$$t + \frac{2022}{t} = x^2 + \frac{2022}{x^2} \quad \Rightarrow \quad (x^2)^2 - \left(t + \frac{2022}{t}\right)x^2 + 2022 = 0.$$

Thus $x^2 = t$ or $x^2 = \frac{2022}{t}$.

Case I. If $x^2 = \lfloor x \rfloor$, the only possible solution is x = 1 since $x \neq 0$. Case II. If $x^2 = \frac{2022}{\lfloor x \rfloor}$, then $x^2 \lfloor x \rfloor = 2022$. The inequality $12 \cdot 12^2 = 1728 < 2022 < 13 \cdot 13^2 = 2197$ suggests |x| = 12. Indeed,

$$(168.5)12 = 2022$$

Thus we have $\lfloor x \rfloor = 12$ and $x^2 = 168.5$, which is the only solution. Therefore $x^2 = 168.5$ $(x \neq 1)$. Ans. $x^2 = 168.5 = \frac{337}{2}$

20. Let A be a vertex of regular hexagon with side 1. Let P, Q, R and S be points on the four sides not containing A as in the figure. Find the minimum of AP + PQ + QR + RS + SA.

Sol. We can use reflections to find the shortest path. Let P_1 be the reflection of A about the vertical line containing P, as shown in the figure below. Since $AP = P_1P$, we have $AP + PQ = P_1P + PQ \ge P_1Q$. Applying similar inequalities we have

$$AP + PQ + QR \ge P_2Q + QR \ge P_2R,$$

$$AP + PQ + QR + RS \ge P_3R + RS \ge P_3S,$$

$$AP + PQ + QR + RS + SA \ge AS + SP_4 \ge AP_4$$

Indeed, the minimum is given by AP_4 . To find AP_4 , we apply the Pythagorean theorem to $\triangle AP_4P_5$. Since $AP_5 = 3\frac{\sqrt{3}}{2}$ and $P_4P_5 = 4 + \frac{1}{2}$, we have

$$AP_4^2 = \left(\frac{3\sqrt{3}}{2}\right)^2 + \left(\frac{9}{2}\right)^2 = \frac{27}{4} + \frac{81}{4} = \frac{108}{4} = 27.$$

Thus the minimum is $\sqrt{27} = 3\sqrt{3}$. Ans. $3\sqrt{3}$

21. Find all integers $n \neq -1$ so that

$$\left(1+\frac{1}{n}\right)^{n+1} = \left(1+\frac{1}{2019}\right)^{2019}.$$
(3)

Sol. We first check that the equation has no positive integer solution. The equation (3) can be written as

$$\left(\frac{n+1}{n}\right)^{n+1} = \left(\frac{2020}{2019}\right)^{2019} \Leftrightarrow (n+1)^{n+1} 2019^{2019} = n^{n+1} 2020^{2019}.$$
(4)

Obviously n = 2019 is not a solution. If n = 2019, we must have

$$2020^{2020}2019^{2019} = 2019^{2020}2020^{2019} \Rightarrow 2020 = 2019.$$

Notice that the numbers n and n + 1 have no common divisors greater than 1. Indeed, any common divisor of n and n + 1 will also divide (n + 1) - n = 1. Since 2019 and 2020 are mutually prime, 2019^{2019} in the left hand side of (4) must divide n^{n+1} in the right hand side. However, if $n \leq 2018$,

$$n^{n+1} < 2018^{2019} < 2019^{2019}.$$

This implies that the equation has no integer solution $0 < n \le 2018$. Similarly, if $2020 \le n$ then $2021^{2021} \le (n+1)^{n+1}$, and so 2020^{2019} in the right hand side is not divisible by $(n+1)^{n+1}$. This contradicts that 2019^{2019} is an integer.

Next we consider integer solutions $n \leq -2$ $(n \neq -1, 0)$. Let n = -k $(k \geq 2)$ and rewrite (3) to see

$$\left(1 - \frac{1}{k}\right)^{1-k} = \left(1 + \frac{1}{2019}\right)^{2019} \Leftrightarrow \left(1 + \frac{1}{k-1}\right)^{k-1} = \left(1 + \frac{1}{2019}\right)^{2019}.$$
(5)

Clearly k = 2020 satisfies (5) and so n = -2020 is a solution of (3).

To show that equation (5) has only one solution k = 2020, we need to verify that the sequence $a_n = (1 + \frac{1}{n})^n$ is strictly increasing, i.e., $a_n < a_{n+1}$ for all $1 \le n$. The inequality is obvious when n = 1. For $n \ge 2$, one can use binomial expansion directly to compare terms in a_n and a_{n+1} ;

$$\left(1+\frac{1}{n}\right)^{n} = 1 + \frac{n}{1!}\left(\frac{1}{n}\right) + \frac{n(n-1)}{2!}\left(\frac{1}{n}\right)^{2} + \dots + \binom{n}{k}\left(\frac{1}{n}\right)^{k} + \dots + \left(\frac{1}{n}\right)^{n},$$

$$\left(1+\frac{1}{n+1}\right)^{n+1} = 1 + \frac{n+1}{1!}\left(\frac{1}{n+1}\right) + \frac{(n+1)n}{2!}\left(\frac{1}{n+1}\right)^{2} + \dots + \binom{n+1}{k}\left(\frac{1}{n+1}\right)^{k} + \dots + \left(\frac{1}{n+1}\right)^{n+1}$$

where $\binom{n}{k} = \frac{n!}{k!(n-k)!}$. The first two terms are identical in both expansions. For all $2 \le k \le n$, observe that the $(k+1)^{th}$ term in a_n can be written as

$$\frac{n(n-1)(n-2)\cdots(n-k+1)}{k!}\left(\frac{1}{n}\right)^k = \frac{1}{k!}\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right)\cdots\left(1-\frac{k-1}{n}\right),$$

which is strictly less than the $(k+1)^{th}$ term of a_{n+1}

$$\frac{(n+1)n(n-1)\cdots(n-k+2)}{k!}\left(\frac{1}{n+1}\right)^k = \frac{1}{k!}\left(1-\frac{1}{n+1}\right)\left(1-\frac{2}{n+1}\right)\cdots\left(1-\frac{k-1}{n+1}\right).$$

It follows that $a_n < a_{n+1}$. Therefore the equation has the only solution n = -2020. Ans. n = -2020