DE Exam
 Texas A\&M High School Math Contest November, 2019

Answers should include units when appropriate.

1. Dividing the lengths by 5 , we get $3,4,5$, hence it is a right triangle. The area of the original triangle is $15 \cdot 20 / 2=150$. The shortest altitude a will satisfy $25 \cdot a / 2=150$, hence $a=300 / 25=12$.

Answer: 12.
2. We have $x+\frac{x y}{100}=30$ and $y+\frac{x y}{100}=25$. Subtracting one equation from the other, we get $x-y=5$. Substituting $y=x-5$ into the first equation, we get $x+\frac{x(x-5)}{100}=30$, i.e.,

$$
x^{2}+95 x-3,000=0
$$

Therefore, $x=\frac{-95 \pm \sqrt{95^{2}+12,000}}{2}=\frac{-95 \pm 145}{2}$. The positive value is $x=25$.
Answer: 25.
3. The product of the first n terms is equal to $10^{\frac{1+2+\cdots+n}{11}}=10^{\frac{n(n+1)}{22}}$. It exceeds 100,000 if and only if $\frac{n(n+1)}{22}>5$, i.e., if $n(n+1)>110$. We have $10 \cdot 11=110$, hence the answer is $n=11$.

Answer: 11.
4. Divide the polynomial $r^{6}+2 r^{4}$ by $r^{4}+r^{2}-1$ using, for example, long division. We get $r^{6}+2 r^{4}=\left(r^{4}+r^{2}-1\right)\left(r^{2}+1\right)+1$, hence the answer is 1 .

Answer: 1.
5. Let $60+x_{1}, 60+x_{2}, \ldots, 60+x_{n}$ be the scores of the students, excluding the five students that scored 100 . Then $0 \leq x_{i} \leq 40$, the number of students is $n+5$, and we have

$$
500+60 n+x_{1}+x_{2}+\cdots+x_{n}=76(n+5)
$$

Equivalently,

$$
x_{1}+x_{2}+\cdots+x_{n}=16 n-120 .
$$

Since $x_{i} \geq 0$, we have $0 \leq 16 n-120$, hence $n \geq \frac{120}{16}=7.5$. It follows that $n \geq 8$. On the other hand, we can have, for example, $x_{1}=8$ and $x_{2}=x_{3}=\cdots=x_{8}=0$.

Answer: 13 students.
6. Taking logarithms of the equations, we get

$$
\left\{\begin{aligned}
\log _{2} 3 \log _{2} x & =\log _{2} 4 \log _{2} y \\
\log _{2} 4\left(\log _{2} 4+\log _{2} x\right) & =\log _{2} 3\left(\log _{2} 3+\log _{2} y\right) .
\end{aligned}\right.
$$

The second equation is equivalent to

$$
\left(\log _{2} 4\right)^{2}+\log _{2} 4 \log _{2} x=\left(\log _{2} 3\right)^{2}+\log _{2} 3 \log _{2} y
$$

Substituting $\log _{2} y=\frac{\log _{2} 3}{\log _{2} 4} \log _{2} x$, we get

$$
\left(\log _{2} 4\right)^{3}+\left(\log _{2} 4\right)^{2} \log _{2} x=\log _{2} 4\left(\log _{2} 3\right)^{2}+\left(\log _{2} 3\right)^{2} \log _{2} x
$$

or

$$
\left(\left(\log _{2} 4\right)^{2}-\left(\log _{2} 3\right)^{2}\right) \log _{2} x=\log _{2} 4\left(\left(\log _{2} 3\right)^{2}-\left(\log _{2} 4\right)^{2}\right)
$$

Dividing both sides by $\left(\log _{2} 4\right)^{2}-\left(\log _{2} 3\right)^{2}$, we get $\log _{2} x=-\log _{2} 4$, i.e., $x=1 / 4$. Then $\log _{2} y=-\log _{2} 3$, hence $y=1 / 3$.

Answer: $x=1 / 4, y=1 / 3$.
7. Let O be the center of the circle, and let $\alpha=\angle B D C$. Since $\angle O B D$ and $\angle O C D$ are right angles, we have $\angle B O C+\angle B D C=\pi$, so $\angle B O C=\pi-\alpha$. Then $\angle B A C=\frac{\pi-\alpha}{2}$ as an inscribed angle. Hence $\angle A B C=\frac{1}{2}\left(\pi-\frac{\pi-\alpha}{2}\right)=\frac{\pi+\alpha}{4}$. On the other hand, by assumptions, $\angle A B C=2 \alpha$. Solving equation $2 \alpha=\frac{\pi+\alpha}{4}$ we get $\alpha=\frac{\pi}{7}$. It follows that $\angle B A C=\frac{3 \pi}{7}$.

Answer: $\frac{3 \pi}{7}$.
8. Using the formula $\sin \alpha \sin \beta=\frac{\cos (\alpha-\beta)-\cos (\alpha+\beta)}{2}$, we get $\frac{1}{2 \sin 10^{\circ}}-2 \sin 70^{\circ}=\frac{1-4 \sin 10^{\circ} \sin 70^{\circ}}{2 \sin 10^{\circ}}=$ $\frac{1-2\left(\cos 60^{\circ}-\cos 80^{\circ}\right)}{2 \sin 10^{\circ}}=\frac{1-1+2 \cos 80^{\circ}}{2 \sin 10^{\circ}}=\frac{2 \sin 10^{\circ}}{2 \sin 10^{\circ}}=1$.

Answer: 1.
9. We have $(x-1)(x-2)(x-3)(x-4)=(x-1)(x-4) \cdot(x-2)(x-3)=\left(x^{2}-5 x+4\right)\left(x^{2}-5 x+6\right)$. If we denote $t=x^{2}-5 x+4$, then our function is $t(t+2)=(t+1)^{2}-1$. The minimal value of $(t+1)^{2}-1$ is at $t=-1$ and is equal to -1 . The value $-1=x^{2}-5 x+4$ is attained, since the equation $x^{2}-5 x+5=0$ has real solutions (namely, $x=(5 \pm \sqrt{5}) / 2$).

Answer: -1
10. Divide the square into four squares of side $1 / 2$. Then out of any five points of the big square there will exist at least two points in one of the four little squares. The distance between them will be not more than the length of the diagonal of the little square, which is $\sqrt{2} / 2$.

On the other hand, if we select the vertices of the big square and the central point, then the distance between any two selected points is at least $\sqrt{2} / 2$.

Answer: $\sqrt{2} / 2=1 / \sqrt{2}$.
11. Since the distances from the center of every sphere to the planes of the octant are equal to 1 , the centers have coordinates $(\pm 1, \pm 1, \pm 1)$. Then the distance from the origin to each center is equal to $\sqrt{3}$. It follows that the radius of the sphere containing all eight spheres is $\sqrt{3}+1$.

Answer: $\sqrt{3}+1$.
12. Triangles $A B A_{1}$ and $A A_{2} A_{1}$ are congruent, since they have a common side and equal angles adjacent to it. Let $A_{2} D$ be the altitude of $\triangle A A_{2} C$. Then triangles $A A_{1} A_{2}$ and $A A_{2} D$ are also congruent. It follows that the $A_{2} D$ is twice shorter than $A_{2} C$. This implies that $\angle D C A_{2}=\pi / 6$. From right triangle $A A_{1} C$ we conclude that $\angle A_{1} A C=\pi / 3$, hence $\angle B A C=\pi / 2$.

Answer: Angles of the triangle are $\pi / 6, \pi / 3, \pi / 2$. Or $30^{\circ}, 60^{\circ}, 90^{\circ}$.
13. Let $y=2^{x}$. Then the equation can be written as $\frac{y^{3}+y}{y^{2}-2}=5$, or $y^{3}-5 y^{2}+y+10=0$. Note that $x=1$ is a solution of the original equation, hence $y=2$ is a solution of the second transformed equation. Dividing the polynomial by $(y-2)$, we get $y^{2}-3 y-5=0$. Solutions of this equation are $y=\frac{3 \pm \sqrt{29}}{2}$. Since $\sqrt{29}>3$ and $y>0$, only $y=\frac{3+\sqrt{29}}{2}$ works, and we get $x=\log _{2} \frac{3+\sqrt{29}}{2}$.

Answer: 1 and $\log _{2} \frac{3+\sqrt{29}}{2}$.
14. We have the following chains of the form $(x, 3 x, 9 x, \ldots)$ in the set $\{1,2, \ldots, 100\}$:
$(1,3,9,27,81),(2,6,18,54),(4,12,36),(5,15,45),(7,21,63),(8,24,72),(10,30,90),(11,33,99)$, then chains of length two:

$$
(13,39),(14,42), \ldots,(32,96),
$$

and single numbers not included in any chain:

$$
34,35,37, \ldots, 98,100
$$

Each chain starts with a number not divisible by 3, so that there are 20-6=14 chains of length 2 and $67-22=45$ single numbers.

We can choose at most 3 numbers from ($1,3,9,27,81$), and most 2 numbers from ($2,6,18,54$), at most 2 from each of the 6 chains of length 3 , at most one from each chain of length 2 , and we can choose each of the isolated points. In total we get that the largest number of members in a subset is

$$
3+2+12+14+45=76
$$

Answer: 76.
15. Let $a=B P$. Then by Theorem of Cosines: $\left(P A^{\prime}\right)^{2}=a^{2}+1-a$. On the other hand, $P A^{\prime}=P A$, hence $P A^{\prime}=3-a$. We get at equation $(3-a)^{2}=a^{2}+1-a$, i.e., $9-6 a=1-a$, or $8=5 a$ and $a=8 / 5$. It follows that $P A=3-8 / 5=7 / 5$.

Similarly, if $b=C Q$, then we have $\left(Q A^{\prime}\right)^{2}=b^{2}+4-2 b$ and $Q A^{\prime}=Q A=3-b$, hence $(3-b)^{2}=b^{2}+4-2 b$, or $9-6 b=4-2 b$, so that $b=5 / 4$. It follows that $Q A=3-5 / 4=7 / 4$.

Applying Theorem of Cosines to $\triangle A P Q$ we get

$$
P Q^{2}=A P^{2}+A Q^{2}-A P \cdot A Q=\frac{49}{25}+\frac{49}{16}-\frac{49}{20}=\frac{49 \cdot 21}{400},
$$

hence $P Q=\frac{7 \sqrt{21}}{20}$.

Answer: $\frac{7 \sqrt{21}}{20}$.
16. Subtracting one equality from the other, we get $x-y=y^{2}-x^{2}$, which can be written as $(x-y)(1+x+y)=0$. Consequently, either $x=y$, or $y=-1-x$. In the first case our system becomes one equation $x^{2}-x+a=0$. Its discriminant is $1-4 a$. Consequently, we get 0 solutions when $a>1 / 4$, one if $a=1 / 4$, and two if $a<1 / 4$.

If $y=-1-x$, then the system becomes $-1-x=x^{2}+a$, i.e., $x^{2}+x+a+1=0$. Its discriminant is $1-4(a+1)=-3-4 a$. Consequently, we get this time 0 solutions when $a>-3 / 4$, one if $a=-3 / 4$, and two if $a<-3 / 4$.

Putting two cases together, we get that the system has 0 solutions if $a>1 / 4,1$ if $a=1 / 4$, 2 if $-3 / 4<a<1 / 4,3$ if $a=-3 / 4$, and 4 if $a<-3 / 4$.

Answer: for a in the interval ($-3 / 4,1 / 4$).
17. The left-hand side of the equation is $\sin x+\sin 2 x+\sin 3 x=\sin x+2 \sin x \cos x+$ $\sin x \cos 2 x+\sin 2 x \cos x=\sin x+2 \sin x \cos x+\sin x \cos 2 x+2 \sin x \cos ^{2} x=\sin x(1+2 \cos x+$ $\left.\cos 2 x+2 \cos ^{2} x\right)=\sin x(2+2 \cos x+2 \cos 2 x)$. Consequently, the equation is equivalent to

$$
(1+\cos x+\cos 2 x)(2 \sin x-1)=0
$$

We get $\sin x=1 / 2$ or $1+\cos x+\cos 2 x=0$. In the first case $x=\pi / 6$ or $x=5 \pi / 6$.

The second case is equivalent to $\cos x+2 \cos ^{2} x=0$, i.e., to $\cos x=0$ or $\cos x=-1 / 2$, which gives solutions $x=\pi / 2$ or $x=2 \pi / 3$.

Answer: 4 solutions.
18. The number can use only digits $0,1,2,3,4,5,6$, since factorials of other digits have more than 3 digits. It follows that 6 is also not possible, since $6!>666$. One of the digits must be then 5 , otherwise our number is not greater than $3 \times 4!=72<100$. Then the minimal digit must be not greater than 3 , because our number is not greater than 3×5 ! $=375<400$. It follows that the minimal digit is not greater than 2 , because our number is not greater than $2 \times 5!+2!=244<300$. The middle (by size) digit must be not greater than 4 because $244=2 \times 5!+2!$ and $241=2 \times 5!+1$ do not satisfy the desired properties. Therefore the minimal digit must be 1 , as our number is not greater than $5!+4!+2!=148<200$. Let us inspect the remaining options:

- triple $(1,4,5): 1!+4!+5!=145$, and this number satisfies the properties;
- triple $(1,3,5): 1!+3!+5!=127$,no;
- triple $(1,2,5): 1!+2!+5!=123$, no;
- triple $(1,1,5): 1!+1!+5!=122$, no.

Answer: 145.
19. Denote by O the point of intersection of $\overline{D F}$ and $\overline{A E}$. Quadrilateral $B D O E$ is a common part of triangle $A B E$ and quadrilateral $D B E F$. It follows that triangles $A D O$ and $E F O$ have equal area, which implies that $A O \cdot O D=F O \cdot O E$. Consequently, $A O: O E=F O: O D$, therefore triangles $A F O$ and $E O D$ are similar, and $\angle O A F=\angle O E D$. This in turn implies that $\overline{A C}$ and $\overline{D E}$ are parallel. Consequently, $B E: B C=B D: B A=3: 5$. This implies that area of $\triangle A B E$ is $3 / 5$ times the are of $\triangle A B C$, i.e., that $s=6$.

Answer: $s=6$.
20. Square the equations and add them. We get $\sin ^{6} x+\cos ^{6} x=\frac{1}{4}\left(\sin ^{2} y+\cos ^{2} y\right)=\frac{1}{4}$. We have $\sin ^{6} x+\cos ^{6} x=\left(\sin ^{2} x+\cos ^{2} x\right)\left(\sin ^{4} x-\sin ^{2} x \cos ^{2} x+\cos ^{4} x\right)=\sin ^{4} x-\sin ^{2} x \cos ^{2} x+$ $\cos ^{4} x=\sin ^{2} x\left(1-\cos ^{2} x\right)-\sin ^{2} x \cos ^{2} x+\cos ^{2} x\left(1-\sin ^{2} x\right)=1-3 \sin ^{2} x \cos ^{2} x$. It follows that $\sin ^{2} x \cos ^{2} x=\frac{1}{4}$. Consequently, $\sin ^{2} 2 x=1$. Therefore, $\sin 2 x= \pm 1$, and $x=\pi / 4+\pi n / 2$ for some integer n. Since we are interested only in the values from the interval $[0, \pi / 2]$, we have $x=\pi / 4$. We have then $\sin x=\sqrt{2} / 2$, hence $\sin y=\sqrt{2} / 2$, and therefore also $y=\pi / 4$.

Answer: $(x, y)=(\pi / 4, \pi / 4)$.
21. Let us prove by induction that the sum is equal to $\arctan \frac{n}{n+2}$. It is true for $n=1$. We use the formula $\tan (\alpha+\beta)=\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta}$. If the statement is true for $n-1$, then the sum for n is equal to $\arctan \frac{n-1}{n+1}+\arctan \frac{1}{1+n+n^{2}}$, so its tangent is equal to
$\frac{\frac{n-1}{n+1}+\frac{1}{1+n+n^{2}}}{1-\frac{n-1}{(n+1)\left(1+n+n^{2}\right)}}=\frac{(n-1)\left(1+n+n^{2}\right)+n+1}{(n+1)\left(1+n+n^{2}\right)-n+1}=\frac{n^{3}+n}{n^{3}+2 n^{2}+n+2}=\frac{n\left(n^{2}+1\right)}{(n+2)\left(n^{2}+1\right)}=\frac{n}{n+2}$.
Answer: $\arctan \frac{n}{n+2}$.

