Math Contest BC Exam Solution November 4, 2023

Directions: If units are involved, include them in your answer.

1. Suppose the hour hand and minute hand of a clock make an angle of 10°. Assuming the hours and minutes are integers, determine the first time from midnight to noon that this occurs. Write your answer in the form $h: m$, where h represents hours and m represents minutes.
2. Consider the collection of all points, obtained by the reflection of point $B(0,1)$ across every line passing through point $A(1,0)$. What is the length of the curve formed by connecting these reflected points?
3. Given rectangle $A B C D$, points P and Q lie on sides $\overline{A B}$ and $\overline{C D}$ respectively. The line segments $\overline{P C}, \overline{P D}, \overline{Q A}$, and $\overline{Q B}$ collectively form six triangles and one quadrilateral. Determine the area of this quadrilateral when the areas of the two triangles containing sides $\overline{A D}$ and $\overline{B C}$ are given as 20 and 23 respectively.
4. Suppose the sum of the lengths of all edges of a rectangular prism (or a cuboid) is 64 , and the length of a diagonal is $7 \sqrt{2}$. Find the surface area of the rectangular prism.
5. How many natural numbers less than or equal to 1000 have exactly 3 factors?
6. What is the value of $\sqrt{11 \cdot 12 \cdot 13 \cdot 14+1}$?
7. Suppose C and E are on the semicircle with diameter $A B=3$. Let D be a point on the segment $\overline{A B}$ such that $\overline{C D} \perp \overline{A B}$ and F is the point of intersection of $\overline{E B}$ and $\overline{C D}$ as in the figure. Find $\frac{B E}{B D}$ if $B F=1$.

8. Find $x^{6}+y^{6}$ if $x+y=1$ and $x^{3}+y^{3}=16$.
9. Consider a sequence of numbers $1000^{2}, 1001^{2}, 1003^{2}, \ldots$ Erase the two last digits from each of these numbers. How many first terms in the resulting sequence form an arithmetic progression?
10. How many three-digit numbers satisfy the following property: two of their digits are equal, and the third one differs from these by 1 ?
11. Suppose that increasing the bus fare by $x \%$ results in a $\frac{x}{2} \%$ decrease in the number of passengers. To achieve an 8% increase in revenue, what percentage increase in the fare should be implemented? Find the required fare increase percentage assuming that the fare increase does not exceed 50%.
12. What is the value of the natural number n for which the number of factors of $2^{n}\left(3^{n}+3^{n+1}\right)$ is 99 ?
13. In $B C+E X A M=2023$, all letters correspond to different digits, $B \neq 0, E \neq 0$. Among all solutions, find the maximal possible value of $E X A M$.
14. Consider a function $f: X \rightarrow X$ for the set X of non-negative integers. Find $f(2023)$ if $f(f(n))+2 f(n)=3 n+4$.
15. If a positive integer n can be represented as three-digit numbers, $a b c$ in base 6 and $c a b$ in base 9 , what is the decimal representation of n ?
16. There are 15 1's arranged in a row, and you can insert either a plus $(+)$ or a minus (-) sign between every two consecutive 1's. How many different ways can you do this such that the result of the calculation equals 7 ?
17. Suppose E is a point inside the square $A B C D$ with $A E=1, D E=2$, and $C E=3$. Find the diagonal $A C$.
18. Let A and B be two objects initially positioned at opposite points along a straight line. When they both travel at their original constant speeds, it takes 30 minutes for them to meet each other. If A doubles their speed while B maintains the original speed, they meet in 25 minutes. Determine the time in minutes it will take for them to meet if B doubles their speed while A retains the original speed.
19. Given triangle $\triangle A B C$, suppose M and N are trisection points of $\overline{B C}$, and $\overline{B E}$ is a median. Line segments $\overline{A M}$ and $\overline{A N}$ divide $\overline{B E}$ into three parts with ratios $a: b: c$. Find the ratio $a: b: c$.
20. Suppose $\angle E B D=\angle E D A=\angle D A C$ for points E and D in $\triangle A B C$. Let m_{1}, m_{2}, and m_{3} be perimeters of $\triangle A B C, \triangle E B D$, and $\triangle A D C$. Find the maximum of $\frac{m_{2}+m_{3}}{m_{1}}$.

