Math Contest BC Exam Solution November 4, 2023

Directions: If units are involved, include them in your answer.

1. Suppose the hour hand and minute hand of a clock make an angle of 10°. Assuming the hours and minutes are integers, determine the first time from midnight to noon that this occurs. Write your answer in the form $h: m$, where h represents hours and m represents minutes.
Solution. Suppose the clock reads $h: m(0 \leq h \leq 11,0 \leq m \leq 59)$. The angle between the hour hand and 12 o'clock is $30 h+\frac{30}{60} m$. And the angle between the minute hand and 12 o'clock is $\frac{360}{60} \mathrm{~m}$. The difference between the two angles must be 10°, and so we have

$$
30 h+\frac{30}{60} m-\frac{360}{60} m= \pm 10^{\circ}
$$

Since $60 h-11 m= \pm 20, m$ is a multiple of 20 , or $m=20 s$. Then $h=(11 s \pm 1) / 3$. Therefore, $11 s \pm 1$ must be divisible by 3 . The only possibilities respecting the range of h are as follows:

$$
h=\frac{11 \cdot 1+1}{3}=4 \text { and } h=\frac{11 \cdot 2-1}{3}=7
$$

when $m=20$ and $m=40$ respectively. The only integer solutions for h and m are $(h, m)=$ $(4,20)$ or $(h, m)=(7,40)$.
Answer: $h: m=4: 20$
2. Consider the collection of all points, obtained by the reflection of point $B(0,1)$ across every line passing through point $A(1,0)$. What is the length of the curve formed by connecting these reflected points?
Solution. Since $P A=B A$, the collection of points P forms a circle with radius $\overline{A B}$ centered at A. Indeed, every point P on the circle is the reflection of B across the line that passes through point A and bisects angle BAP. The length of the circle is $2 \pi \sqrt{2}$.
Answer. $2 \pi \sqrt{2}$
3. Given rectangle $A B C D$, points P and Q lie on sides $\overline{A B}$ and $\overline{C D}$ respectively. The line segments $\overline{P C}, \overline{P D}, \overline{Q A}$, and $\overline{Q B}$ collectively form six triangles and one quadrilateral. Determine the area of this quadrilateral when the areas of the two triangles containing sides $\overline{A D}$ and $\overline{B C}$ are given as 20 and 23 respectively.

Solution.

Let a, b, c, d, and e denote areas of remaining triangles and the quadrilateral as in the figure. The area of $\triangle P D C$ equals the sum of the areas of $\triangle A D Q$ and $\triangle B Q C$ because both are equal to half of the area of the rectangle. Consequently,

$$
d+e+c=(20+d)+(c+23) \quad \Rightarrow \quad e=43
$$

Answer. 43
4. Suppose the sum of the lengths of all edges of a rectangular prism (or a cuboid) is 64 , and the length of a diagonal is $7 \sqrt{2}$. Find the surface area of the rectangular prism.
Solution. Let a, b, and c denote the edges of the rectangular prism. From the condition, we have

$$
4(a+b+c)=64 \quad \text { or } \quad a+b+c=16
$$

and

$$
a^{2}+b^{2}+c^{2}=(7 \sqrt{2})^{2}=98
$$

Consequently, the surface area is

$$
2(a b+b c+c a)=(a+b+c)^{2}-a^{2}+b^{2}+c^{2}=16^{2}-98=158 .
$$

Answer. 158
5. How many natural numbers less than or equal to 1000 have exactly 3 factors?

Solution. If a natural number n has two or more distinct prime factors, then it will have 4 or more factors. Therefore, natural numbers with exactly 3 factors have only one prime factor. Consequently, natural numbers with precisely 3 factors must be of the form $n=p^{2}$ for some prime p. From the computation $31^{2}=961$ and $32^{2}=1024$, there are 11 natural numbers

$$
2^{2}, 3^{2}, 5^{2}, 7^{2}, 11^{2}, 13^{2}, 17^{2}, 19^{2}, 23^{2}, 29^{2}, \text { and } 31^{2}
$$

Answer. 11
6. What is the value of $\sqrt{11 \cdot 12 \cdot 13 \cdot 14+1}$?

Solution. We can simplify the expression by rewriting it as follows.

$$
11 \cdot 12 \cdot 13 \cdot 14+1=(11 \cdot 14)(13 \cdot 12)+1=154 \cdot 156+1=(155-1)(155+1)+1=155^{2}
$$

Therefore, the given expression is indeed equal to 155 .
Answer. 155
7. Suppose C and E are on the semicircle with diameter $A B=3$. Let D be a point on the segment $\overline{A B}$ such that $\overline{C D} \perp \overline{A B}$ and F is the point of intersection of $\overline{E B}$ and $\overline{C D}$ as in the figure. Find $\frac{B E}{B D}$ if $B F=1$.

Solution. Draw $\overline{A E}$ to see that the four points A, E, F, and D are on a circle with the diameter $\overline{A F}$. The secant lines of this circle satisfy

$$
\overline{B E} \cdot \overline{B F}=\overline{B D} \cdot \overline{B A} \quad \Rightarrow \quad \overline{B E}=\overline{B D} \cdot 3 \quad \Rightarrow \quad \frac{B E}{B D}=3 .
$$

Answer. 3
8. Find $x^{6}+y^{6}$ if $x+y=1$ and $x^{3}+y^{3}=16$.

Solution. From the condition, we have

$$
(x+y)^{3}=x^{3}+y^{3}+3 x y(x+y)=16+3 x y \quad \Rightarrow \quad 1=16+3 x y \quad \text { or } \quad x y=-5
$$

and

$$
x^{6}+y^{6}=\left(x^{3}+y^{3}\right)^{2}-2 x^{3} y^{3}=16^{2}-2(-5)^{3}=256+250=506 .
$$

Answer. 506
9. Consider a sequence of numbers $1000^{2}, 1001^{2}, 1003^{2}, \ldots$ Erase the two last digits from each of these numbers. How many first terms in the resulting sequence form an arithmetic progression?

Solution. Let the initial sequence be $a_{n}=(1000+n)^{2}, n=0,1, \ldots$ Then

$$
a_{n}=10^{6}+2000 n+n^{2}
$$

Hence the resulting sequence is $b_{n}=\left\lfloor\frac{a_{n}}{100}\right\rfloor=10^{4}+20 n+\left\lfloor\frac{n^{2}}{100}\right\rfloor$, where $\lfloor x\rfloor$ denotes the largest integer which is not greater than x. Hence the difference between consecutive terms of the sequence will be equal to 20 until $\left\lfloor\frac{n^{2}}{100}\right\rfloor=0$, i.e., $n^{2}<100$. Since n is nonnegative integer, we get that $0 \leq n \leq 9$, so the first 10 terms of the sequence form the arithmetic progression.

Answer. 10
10. How many three-digit numbers satisfy the following property: two of their digits are equal, and the third one differs from these by 1 ?
Solution. If the two digits are equal to 0 and the third one is 1 , there is one such number, i.e., 100. If the two digits are $1, \ldots, 8$ and the third one is bigger by 1 , we have $8 \times 3=24$ such numbers. If two digits are equal to $2, \ldots, 9$ and the third one is smaller, we have $8 \times 3=24$ such numbers. Finally, if two digits are 1 and the third one is zero, this is 101 or 110.
Answer. 51
11. Suppose that increasing the bus fare by $x \%$ results in a $\frac{x}{2} \%$ decrease in the number of passengers. To achieve an 8% increase in revenue, what percentage increase in the fare should be implemented? Find the required fare increase percentage assuming that the fare increase does not exceed 50%.
Solution. Let a and b denote the original cost and the number of passengers respectively. The cost and the number of passengers after the increase are

$$
a\left(1+\frac{x}{100}\right) \quad \text { and } \quad b\left(1-\frac{x}{200}\right) .
$$

respectively. The revenue becomes

$$
a b\left(1+\frac{x}{100}\right)\left(1-\frac{x}{200}\right)=a b\left(1+\frac{8}{100}\right) \quad \Rightarrow \quad \frac{x}{200}-\frac{x^{2}}{20000}=\frac{8}{100} .
$$

Solving $x^{2}-100 x+1600=0$, we have $(x-20)(x-80)=0$ or $x=20$ since $x \leq 50$.
Answer. 20\%
12. What is the value of the natural number n for which the number of factors of $2^{n}\left(3^{n}+3^{n+1}\right)$ is 99?
Solution. By rewriting

$$
2^{n}\left(3^{n}+3^{n+1}\right)=2^{n} 3^{n}(1+3)=2^{n+2} 3^{n}
$$

we see that the number of factors is

$$
(n+3)(n+1)=99 \quad \text { or } \quad n^{2}+4 n-96=(n-8)(n+12)=0 .
$$

So $n=8$
Answer. 8
13. In $B C+E X A M=2023$, all letters correspond to different digits, $B \neq 0, E \neq 0$. Among all solutions, find the maximal possible value of $E X A M$.

Solution. Since $E X A M<2023$ and $E \neq 0$, we have $E=2$ or $E=1$. If $E=2$, then $X=0$, $B C+A M=23$. Note that neither of B nor A can be 0 or 2 , hence $A=B=1$ which is impossible. Thus $E=1$. The largest number that starts with 1 and consists of four distinct digits is 1987. If $E X A M=1987$, then $B C=36$.

Answer. 1987
14. Consider a function $f: X \rightarrow X$ for the set X of non-negative integers. Find $f(2023)$ if $f(f(n))+2 f(n)=3 n+4$.

Solution. For $n=0$, we have $2 f(0)=4-f(f(0)) \leq 4$ since $f(f(n)) \geq 0$. We consider cases $f(0)=0,1,2$ and show that $f(0)=1$.
If $f(0)=0$, we have

$$
f(f(0))+2 f(0)=3 \cdot 0+4 \quad \Rightarrow \quad f(0)=4
$$

which is contradictory. If $f(0)=2$, we have

$$
f(f(0))+2 f(0)=3 \cdot 0+4 \quad \Rightarrow \quad f(2)+4=4 \quad \text { or } \quad f(2)=0 .
$$

However, this would imply, for $n=2$,

$$
f(f(2))+2 f(2)=3 \cdot 2+4 \quad \Rightarrow \quad f(0)=10
$$

which is contradictory.
From $f(0)=1$, we have

$$
f(f(0))+2 f(0)=4 \quad \Rightarrow \quad f(1)=2 .
$$

Inductively, one can show that $f(n)=n+1$ for all $n \in X$. If we assume that $f(k)=k+1$, then
$f(f(k))+2 f(k)=3 k+4 \quad \Rightarrow \quad f(k+1)+2(k+1)=3 k+4 \quad \Rightarrow \quad f(k+1)=3 k+4-2(k+1)=k+2$
for any $k \in X$. Therefore $f(2023)=2024$.
Answer. 2024
15. If a positive integer n can be represented as three-digit numbers, $a b c$ in base 6 and $c a b$ in base 9 , what is the decimal representation of n ?

Solution When expressed in base 6 and 9,

$$
a b c_{6}=36 a+6 b+c \quad \text { and } \quad c a b_{9}=81 c+9 a+b
$$

Simplifying $36 a+6 b+c=81 c+9 a+b$, we have

$$
27 a+5 b-80 c=0 \quad \Rightarrow \quad 27 a=5(16 c-b)
$$

which implies $a=5$ and $16 c-b=27$. Since $0 \leq b \leq 9$,

$$
27 \leq 16 c=b+27 \leq 36
$$

Thus $c=2$ and $b=5$. Now $n=a b c_{6}=36 \cdot 5+6 \cdot 5+2=212$.
Answer. 212
16. There are 151 's arranged in a row, and you can insert either a plus $(+)$ or a minus $(-)$ sign between every two consecutive 1's. How many different ways can you do this such that the result of the calculation equals 7 ?
Solution. First, there are 14 spaces between consecutive 1's where a plus $(+)$ or minus $(-)$ sign can be placed. Now, if we assume that a minus (-) sign is placed in x out of these 14 spaces, while the remaining $14-x$ spaces have plus $(+)$ signs, then the calculation results in

$$
1-x+(14-x)=15-2 x,
$$

which becomes 7 when $x=4$. Therefore, the number of ways to place plus (+) and minus (-) signs to make the calculation result equal to 7 is as follows.

$$
\binom{14}{4}=\frac{14 \times 13 \times 12 \times 11}{4 \times 3 \times 2 \times 1}=1001
$$

Answer. 1001
17. Suppose E is a point inside the square $A B C D$ with $A E=1, D E=2$, and $C E=3$. Find the diagonal $A C$.

Solution. Rotate $\triangle A D E$ by 90° about D to have $\triangle C D F$ as in the figure. Note that $\angle E D F=$ 90° and $E D=F D=2$, and so $\angle D E F=\angle D F E=45^{\circ}$.

On $\triangle E F C, E F=2 \sqrt{2}, E C=3$, and $C F=1$, which implies $\angle E F C=90^{\circ}$ by the Pythagorean theorem. We can also show E is on $\overline{A F}$ since $\angle A E F=\angle A E D+\angle D E F=180^{\circ}$ which follows from $\angle A E D=\angle C F D=90^{\circ}+45^{\circ}$. Now, on the right triangle $\triangle A F C$, we have

$$
A C=\sqrt{(1+2 \sqrt{2})^{2}+1^{2}}=\sqrt{10+4 \sqrt{2}}
$$

Answer. $\sqrt{10+4 \sqrt{2}}$
18. Let A and B be two objects initially positioned at opposite points along a straight line. When they both travel at their original constant speeds, it takes 30 minutes for them to meet each other. If A doubles their speed while B maintains the original speed, they meet in 25 minutes. Determine the time in minutes it will take for them to meet if B doubles their speed while A retains the original speed.
Solution. Let $A B=\ell$, and s_{1} and s_{2} denote the original speed of A and B respectively. From the condition, we have

$$
\left(s_{1}+s_{2}\right) 30=\ell \quad \text { and } \quad\left(2 s_{1}+s_{2}\right) 25=\ell
$$

or

$$
s_{1}+s_{2}=\frac{\ell}{30} \quad \text { and } \quad 2 s_{1}+s_{2}=\frac{\ell}{25} .
$$

Eliminating s_{1} and s_{2}, we have

$$
s_{1}=\ell\left(\frac{1}{25}-\frac{1}{30}\right) \quad \text { and } \quad s_{2}=\ell\left(\frac{2}{30}-\frac{1}{25}\right)
$$

We want to find t such that

$$
\left(s_{1}+2 s_{2}\right) t=\ell
$$

From

$$
s_{1}+2 s_{2}=\ell\left(\frac{1}{25}-\frac{1}{30}\right)+2 \ell\left(\frac{2}{30}-\frac{1}{25}\right)=\ell\left(\frac{1}{25}-\frac{1}{30}+\frac{4}{30}-\frac{2}{25}\right)=\ell\left(\frac{3}{30}-\frac{1}{25}\right)=\ell \frac{6}{100}
$$

we have $t=100 / 6 \mathrm{~min}$ because

$$
\left(s_{1}+2 s_{2}\right) \frac{100}{6}=\ell
$$

Answer. $\frac{50}{3}$ min or $16 \frac{2}{3} \mathrm{~min}$
19. Given triangle $\triangle A B C$, suppose M and N are trisection points of $\overline{B C}$, and $\overline{B E}$ is a median. Line segments $\overline{A M}$ and $\overline{A N}$ divide $\overline{B E}$ into three parts with ratios $a: b: c$. Find the ratio $a: b: c$.
Solution. Consider the reflection of $\triangle A B C$ about E as in the figure below. We have $\overline{A M} \|$ $\overline{C M^{\prime}}$ and $\overline{A N} \| \overline{C N^{\prime}}$.

From the similarity $\triangle A P D \sim \triangle M^{\prime} X D$ with the ratio $A D / M^{\prime} D=3 / 1$,

$$
\frac{A M^{\prime}}{M^{\prime} D}=\frac{2(b+c)}{a}=\frac{2}{1} \quad \Rightarrow \quad a=b+c
$$

Similarly, from the similarity $\triangle A Q D \sim \triangle N^{\prime} Y D$ with the ratio $A D / N^{\prime} D=3 / 2$,

$$
\frac{N^{\prime} D}{A N^{\prime}}=\frac{a+b}{2 c}=\frac{2}{1} \Rightarrow a+b=4 c .
$$

Thus we have

$$
a: b: c=\frac{5}{2} c: \frac{3}{2} c: c=5: 3: 2 .
$$

Answer: 5:3:2
20. Suppose $\angle E B D=\angle E D A=\angle D A C$ for points E and D in $\triangle A B C$. Let m_{1}, m_{2}, and m_{3} be perimeters of $\triangle A B C, \triangle E B D$, and $\triangle A D C$ respectively. Find the maximum of $\frac{m_{2}+m_{3}}{m_{1}}$.

Solution. Let $B C=a, A C=b$, and $A B=c$. From the condition on congruent angles, we have

$$
\overline{E D} \| \overline{A C} \quad \text { and } \quad \angle A C D=\angle E D B
$$

which imply similarities $\triangle A B C \sim \triangle E B D \sim \triangle D A C$. From $\triangle D A C \sim \triangle A B C$ and $A C=b$,

$$
\frac{D C}{b}=\frac{A D}{c}=\frac{A C}{a}=\frac{b}{a}
$$

So $m_{3}=D C+A D+A C=(b+c+a) \frac{b}{a}$ or

$$
\frac{m_{3}}{m_{1}}=\frac{b}{a}
$$

since $m_{1}=a+b+c$.
Since $\triangle E B D \sim \triangle A B C$ and $B D=a-D C=\frac{a^{2}-b^{2}}{a}$,

$$
\frac{m_{2}}{m_{1}}=\frac{B D}{B C}=\frac{a^{2}-b^{2}}{a^{2}}
$$

Now

$$
\frac{m_{2}+m_{3}}{m_{1}}=\frac{a^{2}-b^{2}}{a^{2}}+\frac{b}{a}=1-\frac{b^{2}}{a^{2}}+\frac{b}{a}=-\left(\frac{b}{a}-\frac{1}{2}\right)^{2}+\frac{5}{4} \leq \frac{5}{4}
$$

Answer. $\frac{5}{4}$

