BEST STUDENT EXAM OPEN

Texas A\&M High School Math Contest
November 4, 2023

Directions: Answers should be simplified, and if units are involved include them in your answer.

Problem 1. What is the sum of the reciprocals of the solutions of the equation $n!+3=3^{n-1}$?
Problem 2. Suppose that positive integers x, y satisfy the equation $x^{y}+1=(x+1)^{2}$. What is the maximum possible value of $x^{2}+y^{2}$?

Problem 3. How many prime numbers exist, which are less than 2023 , and have a digit sum equaling 2 ?
Problem 4. We possess 5 white marbles and 10 black marbles. How many arrangements can we create when we place them in a sequence from left to right, ensuring that there is at least one black marble positioned immediately after every ${ }^{1}$ white one?

Problem 5. How many solutions (a, b, c) does the equation $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=d$ have? Assume that a, b, c, d are positive integers and $a<b<c$.

Problem 6. Let $a=10^{2 \times 2023}-10^{2023}+1$. What is $\frac{1}{2}(1+\lfloor 2 \sqrt{a}\rfloor)$? Here, $\lfloor x\rfloor$ denotes the greatest integer less than or equal to x.

Problem 7. Evaluate $\lim _{n \rightarrow \infty}\left(\frac{n}{n^{2}+1^{2}}+\frac{n}{n^{2}+2^{2}}+\cdots+\frac{n}{2 n^{2}}\right)$.
Problem 8. Let $f(x)=\frac{4^{x}}{4^{x}+2}$. Evaluate the following sum

$$
S=\sum_{k=1}^{2023} f\left(\frac{k}{2024}\right)
$$

Problem 9. What is the largest possible number of elements in a subset A of positive integers, where the sum of any three distinct elements in A results in a prime number?

Problem 10. In triangle $\triangle A B C$, where $\angle A=45^{\circ}$, point D is located on line $B A$ such that $B D$ extends beyond point A, and $B D$ is equal in length to the sum of $B A$ and $A C$. Furthermore, we have two additional points, K and M, positioned on line segments $A B$ and $B C$, respectively, such that the area of triangle $\triangle B D M$ matches the area of triangle $\triangle B C K$. What is the measure of angle $\angle B K M$?

Problem 11. How many functions f from the set $1,2,3,4$ to itself satisfy the condition that $f(f(x))=f(x)$?
Problem 12. Let \mathbb{N} represent the set of positive integers. Assume that a function $f: \mathbb{N} \rightarrow \mathbb{N}$ satisfies the following properties
(a) $f(x y)=f(x)+f(y)-1$, for all $x, y \in \mathbb{N}$.
(b) $f(x)=1$ for finitely many x 's.
(c) $f(30)=4$.

What is the value of $f(2)$?
Problem 13. For every positive integer n, let's define a set A_{n} as follows:

$$
A_{n}=\{x \in \mathbb{N} \mid \operatorname{gcd}(x, n)>1\}
$$

We refer to a natural number $n>1$ as a 'good' number if the set A_{n} exhibits closure under addition. In other words, for any two numbers x and y in A_{n}, their sum $x+y$ also belongs to A_{n}. How many 'good' even numbers, not exceeding 2023, exist?

Problem 14. How many 3-digit prime numbers can be represented as $\overline{a b c}$ where $b^{2}-4 a c=9$?
Problem 15. We choose a subset S from the set $A=\{1,2,3, \ldots, 1001\}$ with the condition that for any two elements x and y in S, their sum $x+y$ is not in S. What is the largest possible size of the set S ?

[^0]Problem 16. Suppose we have a triangle $\triangle A B C$ with side lengths $A B=4, A C=5$, and $B C=6$. Let A^{\prime}, B^{\prime}, and C^{\prime} be the feet of the altitudes corresponding to the vertices A, B, and C, respectively. Furthermore, let $A^{\prime \prime}, B^{\prime \prime}$, and $C^{\prime \prime}$ be the points of intersection of the lines $A A^{\prime}, B B^{\prime}$, and $C C^{\prime}$ with the circumcircle of the triangle $\triangle A B C$. What is the sum $\frac{A A^{\prime \prime}}{A A^{\prime}}+\frac{B B^{\prime \prime}}{B B^{\prime}}+\frac{C C^{\prime \prime}}{C C^{\prime}}$?

Problem 17. Consider the function

$$
g(x)=\left(x^{2}+7 x-47\right) \cosh (x)
$$

where $\cosh (x)=\frac{1}{2}\left(e^{x}+e^{-x}\right)$. For every natural number $n, g^{(n)}(x)$ denotes the nth derivative of g. What is the sum of the numbers n satisfying $g^{(n)}(0)=2023$?

Problem 18. Evaluate the integral

$$
\int_{0}^{\frac{\pi}{4}}\left(\cos ^{4} 2 x+\sin ^{4} 2 x\right) \ln (1+\tan x) d x
$$

Problem 19. Let $a=\pi / 2023$. Find the smallest positive integer n such that

$$
2\left[\cos (a) \sin (a)+\cos (4 a) \sin (2 a)+\cos (9 a) \sin (3 a)+\cdots+\cos \left(n^{2} a\right) \sin (n a)\right]
$$

is an integer.
Problem 20. Determine the value of

$$
S=\sqrt{1+\frac{1}{1^{2}}+\frac{1}{2^{2}}}+\sqrt{1+\frac{1}{2^{2}}+\frac{1}{3^{2}}}+\cdots+\sqrt{1+\frac{1}{22^{2}}+\frac{1}{23^{2}}} .
$$

[^0]: ${ }^{1}$ In the version given during the exam it was written "a" instead of "every" which can be interpreted differently from what was originally meant; both interpretations were taken into account during the grading.

