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Problem 1. What is the sum of the reciprocals of the solutions of the equation n! + 3 = 3n−1?

Solution 1. It is easy to verify that the only solutions of the equation that are less than 6 are n = 3, and n = 4. For

n ≥ 6, the number n! is divisible by 9, but 3n−1 − 3 is not. Therefore, the answer is 1
3 + 1

4 =
7

12
. �

Problem 2. Suppose that positive integers x, y satisfy the equation xy + 1 = (x + 1)2. What is the maximum possible

value of x2 + y2?

Solution 2. The equation implies that xy−1 = x + 2, so y = 1 is impossible, hence y ≥ 2 and x|xy−1. In particular,

x|x + 2, which implies x|2. Since x = 1 would lead to the contradiction 1=3, then we should try x = 2. The equation,

therefore, reduces to 2y−1 = 2 + 2 = 4, which has a unique solution y = 3, so the only possible value for x2 + y2 is 13 . �

Problem 3. How many prime numbers exist, which are less than 2023, and have a digit sum equaling 2?

Solution 3. Let N be such a prime number, so either N = 2 or N has two digits that are both 1, with all other digits

being 0. Because N must be prime, the last digit must be 1, so

N = 100 . . . 00︸ ︷︷ ︸
n

1 = 10n + 1 < 2023,

which implies that n < 4. Notice that 101 + 1 = 11 and 102 + 1 = 101 are prime numbers, but 103 + 1 = 1001 is divisible by

11, so the answer is 3 . �

Problem 4. We possess 5 white marbles and 10 black marbles. How many arrangements can we create when we place

them in a sequence from left to right, ensuring that there is at least one black marble positioned immediately after every 1

white one?

Solution 4. Rearrange the marbles by attaching to each white marble a black marble positioned immediately after it.

This way, we have a total of 5 black marbles B and 5 “white-black” marbles WB to arrange in a row, from left to right. It

is important to note that each arrangement of these 10 marbles corresponds to exactly one of the arrangements requested

in the problem, and vice versa. Therefore, the total number of such arrangements can be calculated as
(
10
5

)
= 10!

5!5! , which

simplifies to 252. Hence, the answer is 252 . 2�

Problem 5. How many solutions (a, b, c) does the equation 1
a + 1

b + 1
c = d have? Assume that a, b, c, d are positive

integers and a < b < c.

Solution 5. Let 1
a + 1

b + 1
c = d. Since a, b, c, d are positive integers and a < b < c, we have

1

a
+

1

b
+

1

c
<

1

1
+

1

2
+

1

3
=

11

6
< 2,

so d = 1. We claim that a = 2. This is because a 6= 1, and if a ≥ 3 we would have

1

a
+

1

b
+

1

c
≤ 1

3
+

1

4
+

1

5
=

47

60
< 1,

which is impossible. So we must have
1

b
+

1

c
=

1

2

1In the version given during the exam it was written “a” instead of “every” which can be interpreted differently from what was originally meant;

both interpretations were taken into account during the grading.
2If at the end of the formulation of Problem 4 “every white one” is replace by “a white one” it can be very likely interpreted as follows: there

exists a white marble with a black one positioned immediately after it. With this interpretation, there is only one arrangement which does not

satisfies this condition: in this arrangement 10 black marbles are followed by 5 white ones. So in this interpretation the answer is
(15
5

)
− 1 = 3002.
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and therefore, b ≥ 3. We claim that b = 3 because if b ≥ 4 we would have

1

2
=

1

b
+

1

c
≤

1

4
+

1

5
=

9

20
<

1

2
,

which is impossible. So a = 2, b = 3, hence c = 6. Therefore, the number of solutions is 1 . �

Problem 6. Let a = 102×2023 − 102023 + 1. What is 1
2 (1 + b2

√
ac)? Here, bxc denotes the greatest integer less than or

equal to x.

Solution 6. Let b = 102023, so that a = b2 − b+ 1 = (b− 1
2 )2 + 3

4 . In particular, we have

(b− 1

2
)2 < a < b2,

which implies that

2b− 1 < 2
√
a < 2b,

hence b2
√
ac = 2b− 1 and 1

2 (1 + b2
√
ac) = b = 102023 .�

Problem 7. Evaluate lim
n→∞

(
n

n2 + 12
+

n

n2 + 22
+ · · ·+ n

2n2

)
.

Solution 7. We have

lim
n→∞

(
n

n2 + 12
+

n

n2 + 22
+ · · ·+ n

2n2

)
= lim

n→∞

n∑
k=1

n

n2 + k2

= lim
n→∞

n∑
k=1

1

n
· n

1 + ( kn )2

=

∫ 1

0

dx

1 + x2
= arctanx |10

=
π

4
.�

Problem 8. Let f(x) = 4x

4x+2 . Evaluate the following sum

S =

2023∑
k=1

f

(
k

2024

)
.

Solution 8. We first observe that

f(1− x) =
41−x

41−x + 2
=

4

4 + 2 · 4x
=

2

2 + 4x
,

hence

f(1− x) + f(x) =
4x

4x + 2
+

2

2 + 4x
= 1.

We can write the sum as

S =

[
f

(
1

2024

)
+ f

(
2023

2024

)]
+

[
f

(
2

2024

)
+ f

(
2022

2024

)]
+ · · ·+

[
f

(
1011

2024

)
+ f

(
1013

2024

)]
+ f

(
1012

2024

)
,

which is simplified to

S = 1011 + f

(
1

2

)
= 1011 +

4
1
2

4
1
2 + 2

= 1011.5 .�

Problem 9. What is the largest possible number of elements in a subset A of positive integers, where the sum of any

three distinct elements in A results in a prime number?

Solution 9. The residues obtained when dividing the elements of A by 3 cannot encompass all three options, namely 0,

1, and 2:

3a+ (3b+ 1) + (3c+ 2) = 3(a+ b+ c+ 1) ≥ 6
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meaning that the sum of the three representatives with different residues is not a prime number, in particular. This implies

that |A| ≤ 4; otherwise, by the Pigeonhole Principle, three distinct elements of A would have the same residue modulo 3,

and their sum would be divisible by 3 (and not less than 1+4+7=12). On the other hand, the example A = {1, 3, 7, 9} shows

that |A| = 4 is possible, therefore, the answer is 4 . �

Problem 10. In triangle ∆ABC, where ∠A = 45◦, point D is located on line BA such that BD extends beyond point A,

and BD is equal in length to the sum of BA and AC. Furthermore, we have two additional points, K and M , positioned on

line segments AB and BC, respectively, such that the area of triangle ∆BDM matches the area of triangle ∆BCK. What

is the measure of angle ∠BKM?

Solution 10. We have AD = AC, so ∠ACD = ∠ADC = 1
2 (45◦) = 22.5◦. Let L be the

intersection of CK and DM . Denoting the area of a shape ∆ by [∆] we can write

[MLC] = [KLD]

due to the assumption that [BDM ] = [BCK]. Therefore, if H1, H2 are the feet of the altitudes

drawn from K,M , respectively, on the line CD, then we have

CD ·KH1 = CD ·MH2

so KH1 = MH2, hence KM ‖ CD and ∠BKM = ∠ADC = 22.5◦ . �

A

B C

D

M

K
H1

H2

45◦

L

Problem 11. How many functions f from the set 1, 2, 3, 4 to itself satisfy the condition that f(f(x)) = f(x)?

Solution 11. Let us denote the range of f by Rf . The condition is equivalent to f(y) = y, for all y ∈ Rf , which means

f acts as the identity function on Rf . We consider the following three cases.

(a) |Rf | = 1. In this case the function is constant, so there are 4 choices for f .

(b) |Rf | = 2. In this case, there are
(
4
2

)
= 6 ways to choose a 2-element subset of A as the range of f . The remaining 2

elements in the complement of Rf can each be mapped to any of the 2 elements in Rf , resulting in 22 = 4 possible

functions from the complement of Rf to Rf . Therefore, there are 6× 4 = 24 functions in this case.

(b) |Rf | = 2. In this case, there are
(
4
3

)
= 4 ways to choose a 3-element subset of A as the range of f . The single remaining

element in the complement of Rf can be mapped to any of the 3 elements in Rf , resulting in 31 = 3 possible functions

from the complement of Rf to Rf . Therefore, there are 4× 3 = 12 functions in this case.

(d) |Rf | = 4. There is only one function in this case: the identity function.

So the total number of options is 4 + 24 + 12 + 1 = 41 . �

Problem 12. Let N represent the set of positive integers. Assume that a function f : N → N satisfies the following

properties

(a) f(xy) = f(x) + f(y)− 1, for all x, y ∈ N.

(b) f(x) = 1 for finitely many x’s.

(c) f(30) = 4.

What is the value of f(2)?

Solution 12. We claim that if x ≥ 2 then f(x) ≥ 2. If f(x) = 1, then

f(x2) = f(x) + f(x)− 1 = 1,

and repeating this implies

f(x) = f(x2) = f(x4) = f(x8) = · · · = 1,
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which contradict the condition (b). On the other hand, we can write

4 = f(30) = f(15) + f(2)− 1 = f(5) + f(3)− 1 + f(2)− 1,

hence f(5) + f(3) + f(2) = 6, and since f(5), f(3), f(2) ≥ 2, we must have f(2) = f(3) = f(5) = 2, so the answer is 2 . �

Problem 13. For every positive integer n, let’s define a set An as follows:

An = {x ∈ N | gcd(x, n) > 1}.

We refer to a positive integer n > 1 as a ‘good’ number if the set An exhibits closure under addition. In other words, for any

two numbers x and y in An, their sum x+ y also belongs to An. How many ‘good’ even numbers, not exceeding 2023, exist?

Solution 13. We assert that each ‘good’ even number must be a power of 2. Let n be a ‘good’ and even number, which

means n = 2km, where k ≥ 1 and m is an odd number. If m > 1, then gcd(m,n) = m > 1, indicating that m is in the set

An. Similarly, gcd(2k, n) = 2k > 1, so 2k is also in An. However,

gcd(2k +m,n) = gcd(2k +m︸ ︷︷ ︸
odd

, 2km) = gcd(2k +m,m) = gcd(2k,m) = 1,

meaning that m+ 2k /∈ An, contradicting the assumption that n is a ‘good’ number. Therefore, we must have m = 1.

On the other hand, any integral power of 2 is a ‘good’ number: if n = 2k, where k ≥ 1, then An consists of all even

numbers, which is closed under addition. Clearly, the inequality 2k ≤ 2023 has 10 solutions k = 1, 2, . . . , 10, so the answer is

10 . �

Problem 14. How many 3-digit prime numbers can be represented as abc where b2 − 4ac = 9?

Solution 14. The condition b2 − 4ac = 9 implies that the polynomial P (x) := ax2 + bx+ c has rational roots, so it can

be factored over rational numbers. In particular, we can write

kP (x) = (px+ q)(rx+ s),

for some integers p, q, r, s, and k > 0, such that gcd(p, q) = gcd(r, s) = 1. In particular, we have

pr = ka, ps+ qr = kb, qs = kc

We claim that k = 1, and this is a particular case of the general Gauss’ lemma, indeed. If k has a prime factor ν, then we

have

ν | pr, ν | ps+ qr, ν | qs

implying that either ν | p or ν | r, and, either ν | q or ν | s. But since gcd(p, q) = gcd(r, s) = 1, we can only have two cases:

either ν | p and ν | s, or, ν | q and ν | r. The first case, combined with the condition ν | ps+ qr, would result in ν | qr, while

the second case would result in ν | ps, both of which contradict gcd(p, q) = gcd(r, s) = 1 due to the fact that ν is a prime.

Therefore, k does not have any prime factor, so k = 1. In particular, we have

P (x) = (px+ q)(rx+ s),

hence

abc = P (10) = (10p+ r)(10r + s),

and this factorization is nontrivial since none of the factors 10p+ r and 10q + s can be equal to one (indeed, each of them is

greater than 10). Therefore, abc has to be a composite number, so the answer is 0 . �

Problem 15. We choose a subset S from the set A = {1, 2, 3, . . . , 1001} with the condition that for any two elements x

and y in S, their sum x+ y is not in S. What is the largest possible size of the set S?

Solution 15. First, we observe that the subset S = {501, 502, . . . , 1001}, which contains 501 elements, satisfies the given

condition.
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Now, let’s consider the case where |S| > 501. If t is the greatest element in the set S, then we can form the following b t2c
pairs of (x, y):

(1, t− 1), (2, t− 2), . . . ,

(
b t

2
c, d t

2
e
)
.

Here, bxc denotes the greatest integer less than or equal to x, and dxe denotes the least integer greater than or equal to x.

The pairs listed above satisfy the condition that x+ y = t, and since t is in S, at most one component of each pair can also

be in S. Since all numbers 1, 2, . . . , t− 1 have appeared as one of the components of these pairs, we should have |S| ≤ b t2c.
But based on the assumption |S| > 501, we should have b t2c ≥ 502, hence t ≥ 1004, which is a contradiction. Therefore, the

answer is 501 .�

Problem 16. Suppose we have a triangle ∆ABC with side lengths AB = 4, AC = 5, and BC = 6. Let A′, B′, and

C ′ be the feet of the altitudes corresponding to the vertices A, B, and C, respectively. Furthermore, let A′′, B′′, and C ′′

be the points of intersection of the lines AA′, BB′, and CC ′ with the circumcircle of the triangle ∆ABC. What is the sum
AA′′

AA′ + BB′′

BB′ + CC′′

CC′ ?

Solution 16. Let H be the orthocenter of ∆ABC. It is well known that

HA′ = A′A′′, HB′ = B′B′′, HC ′ = C ′C ′′.

Indeed, the angles ∠BA′′A and ∠BCA are equal since they are subtended

by the same arc. Then, by analyzing the corresponding right triangles,

we can conclude that the angles ∠BCB′ and BHA′ are equal. Since the

former angle is equal to ∠BCA, and the latter angle is equal to ∠BHA′′,

we can deduce that ∠BA′′H = ∠BHA′′, which implies that HA′ = A′A′′.

We can then write

AA′′

AA′
= 1 +

A′A′′

AA′
= 1 +

HA′

AA′
= 1 +

HA′ ·BC
AA′ ·BC

= 1 +
[BHC]

[ABC]
,

where [∆] denotes the area of the the shape ∆. After finding similar ex-

pressions for BB”
BB′ and CC′′

CC′ we can write

AA′′

AA′
+
BB′′

BB′
+
CC ′′

CC ′
= 3 +

[BHC] + [AHC] + [AHB]

[ABC]
= 3 +

[ABC]

[ABC]
= 4,

so the answer is 4 . �

A

B C

H

A′

A′′

B′

B′′

C ′
C ′′

Problem 17. Consider the function

g(x) =
(
x2 + 7x− 47

)
cosh(x),

where cosh(x) = 1
2 (ex + e−x) . For every natural number n, g(n)(x) denotes the nth derivative of g. What is the sum of the

numbers n satisfying g(n)(0) = 2023?

Solution 17. Let P (x) = x2 + 7x− 47, so we know that

P (0) = −47, P ′(0) = 7, P ′′(0) = 2, P (m)(0) = 0 for m ≥ 3.

On the other hand, it is straightforward to observe that cosh(m)(0) = 1 for even values of m, and cosh(m)(0) = 0 for odd

values of m. Applying the generalized product rule of differentiation, we have

g(n)(0) =

n∑
k=0

(
n

k

)
P (k)(0) cosh(n−k)(0),

which results in

g(n)(0) =

−47 + n(n− 1) if n is even

7n if n is odd
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Upon checking, the only odd solution of the equation g(n)(0) = 2023 is n = 289, whereas the only even solution is n = 46, so

the answer is 289 + 46 = 335 .�

Problem 18. Evaluate the integral ∫ π
4

0

(cos4 2x+ sin4 2x) ln(1 + tanx)dx.

Solution 18. By making the substitution x =
π

4
− u we get

I =

∫ π
4

0

(cos4 2u+ sin4 2u) ln

(
1 +

1− tanu

1 + tanu

)
du

=

∫ π
4

0

(cos4 2u+ sin4 2u) ln

(
2

1 + tanu

)
du = ln 2

∫ π
4

0

(cos4 2u+ sin4 2u)du− I.

We solve for I and we obtain

I =
ln 2

2

∫ π
4

0

(cos4 2u+ sin4 2u)du =
ln 2

2

∫ π
4

0

(
1− sin2 4u

2

)
du

=
ln 2

2

∫ π
4

0

(
3

4
+

cos 8u

4

)
du =

3π ln 2

32
.�.

Problem 19. Let a = π/2023. Find the smallest positive integer n such that

2[cos(a) sin(a) + cos(4a) sin(2a) + cos(9a) sin(3a) + · · ·+ cos(n2a) sin(na)]

is an integer.

Solution 19. By the product-to-sum identities, we have that 2 cos a sin b = sin(a+ b)− sin(a− b). Therefore, this reduces

to a telescope series:

n∑
k=1

2 cos(k2a) sin(ka) =

n∑
k=1

[sin(k(k + 1)a)− sin((k − 1)ka)]

= − sin(0) + sin(2a)− sin(2a) + sin(6a)− · · · − sin((n− 1)na) + sin(n(n+ 1)a)

= − sin(0) + sin(n(n+ 1)a) = sin(n(n+ 1)a)

Thus, we need sin
(
n(n+1)π

2023

)
to be an integer; this can be only {−1, 0, 1}, which occur when n(n+1)π

2023 is an integer multiple of

π
2 , in other words, when 2n(n+1)

2023 is an integer. Thus 2023 = 7 · 172|2n(n+ 1). In particular, since gcd(n, n+ 1) = 1, we must

have exactly one of the following two cases: (1) 289 = 172|n, or (2) 289 = 172|n+ 1. Let us consider these cases separately.

Case (1): n is a multiple of 289, and either 7|n or 7|n+ 1. In the former case, the smallest positive multiple of 289 that is

divisible by 7 is 2023. In the latter case, we can write

n = 289k ≡ 2k (mod 7),

therefore, we have

n+ 1 ≡ 2k + 1 ≡ 0 (mod 7),

implying that the smallest positive value of k is 3, hence n = 3× 289 = 867.

Case (2): n+ 1 is a multiple of 289, and either 7|n or 7|n+ 1. In the latter case, since the smallest positive multiple of 289

that is divisible by 7 is 2023, then n = 2022. In the former case, we can write

n+ 1 = 289k ≡ 2k (mod 7),

therefore, we have

n ≡ 2k − 1 ≡ 0 (mod 7),

implying that the smallest positive value of k is 4, hence n = 4× 289− 1 = 1155.
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We conclude that the smallest value of n with the desired condition is 867 . �

Problem 20. Determine the value of

S =

√
1 +

1

12
+

1

22
+

√
1 +

1

22
+

1

32
+ · · ·+

√
1 +

1

222
+

1

232
.

Solution 20. We have

S =

22∑
k=1

√
1 +

1

k2
+

1

(k + 1)2

=

22∑
k=1

√
k2(k + 1)2 + (k + 1)2 + k2

k2(k + 1)2

=

22∑
k=1

√
k2(k + 1)2 + 2k(k + 1) + 1

k2(k + 1)2

=

22∑
k=1

√
(k(k + 1) + 1)2

k2(k + 1)2

=

22∑
k=1

k(k + 1) + 1

k(k + 1)

=

22∑
k=1

(
1 +

1

k
− 1

k + 1

)
= 22 +

(
1− 1

23

)
= 22

22

23
=

528

23
.�
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