EF Exam Solutions
 Texas A\&M High School Math Contest

November 4, 2023
All answers must be simplified, and if units are involved, be sure to include them.

1. Find $p+q$ if p and q are rational numbers such that $\sqrt{p+q \sqrt{7}}=\frac{9}{4-\sqrt{7}}$.

Solution: We have

$$
\sqrt{p+q \sqrt{7}}=\frac{9(4+\sqrt{7})}{(4-\sqrt{7})(4+\sqrt{7})}=\frac{9(4+\sqrt{7})}{16-7}=4+\sqrt{7},
$$

which implies that $p+q \sqrt{7}=23+8 \sqrt{7}$. Since p and q are rational numbers and $\sqrt{7}$ is irrational, we get $p=23, q=8$ and $p+q=31$.

Answer: 31
2. How many pairs of integers (x, y) are solutions of the equation $x^{2}-x y+y^{2}=x+y$.

Solution: Our equation can be written as

$$
2 x^{2}-2 x y+2 y^{2}-2 x-2 y+2=2 \Leftrightarrow(x-y)^{2}+(x-1)^{2}+(y-1)^{2}=2
$$

Since x and y are integers, one of the three terms in the left-hand side of the last equation must be equal to zero, and the other two both equal to 1 . Therefore, we have the following cases:
(a) $x=y$. Then $|x-1|=|y-1|=1$, so either $x=y=0$ or $x=y=2$. We get two solutions in this case.
(b) $x=1$. Then $|y-1|=1$ so either $y=0$ or $y=2$. We get two solutions in this case.
(c) $y=1$. Then $|x-1|=1$ so either $x=0$ or $x=2$. We get two solutions in this case.

So, all together there are 6 solutions.
Answer: 6
3. Let f be an increasing function and g be a function such that

$$
f(g(x)+2023) \leq f(x) \leq(f \circ g)(x+2023),
$$

for all real numbers x. Find $g(0)$.
Solution: Since f is increasing, from $f(g(x)+2023) \leq f(x)$ we get $g(x)+2023 \leq x \Leftrightarrow g(x) \leq x-2023$ and from $f(x) \leq(f(g(x+2023))$ we get $x \leq g(x+2023)$ for all real numbers x. Replacing x with $x-2023$ in the last inequality, we obtain $x-2023 \leq g(x)$. Therefore, $g(x)=x-2023$ which implies $g(0)=-2023$.
Answer: - 2023
4. Find the exact value of

$$
\sqrt{36^{\log _{6} 5}+10^{1-\log 2-3^{\log _{9} 36}+1}}
$$

Solution: We use the identity $a^{\log _{a} x}=x$ to write

$$
36^{\log _{6} 5}=\left(6^{2}\right)^{\log _{6} 5}=\left(6^{\log _{6} 5}\right)^{2}=5^{2}=25, \quad 3^{\log _{9} 36}=(\sqrt{9})^{\log _{9} 36}=\sqrt{9^{\log _{9} 36}}=\sqrt{36}=6 .
$$

Since $1-\log 2=\log 10-\log 2=\log \left(\frac{10}{2}\right)=\log 5$, we get that $10^{1-\log 2}=10^{\log 5}=5$. So the exact value of our given number is $\sqrt{25+5-6+1}=5$.
Answer: 5
5. When the polynomial $P(x)=3 x^{4}+m x^{3}+n x^{2}+2 x-15$ is divided by $3 x^{2}+x-2$, the remainder is $x-5$. Find $m^{2}+n^{2}$.
Solution: There exists a polynomial $Q(x)$ such that

$$
P(x)=\left(3 x^{2}+x-2\right) Q(x)+x-5=(3 x-2)(x+1) Q(x)+x-5,
$$

for all x. We get

$$
3 x^{4}+m x^{3}+n x^{2}+2 x-15=(3 x-2)(x+1) Q(x)+x-5,
$$

for all x. By substituting $x=-1$ in the above equation, we obtain $3-m+n-17=-6$, which implies $-m+n=8$. By substituting $x=\frac{2}{3}$ into the same equation we get $\frac{16}{27}+\frac{8}{27} m+\frac{4}{9} n+\frac{4}{3}-15=\frac{2}{3}-5$, which after simplification leads to $2 m+3 n=59$. Solving the system consisting of these equations yields $m=7$ and $n=15$ which implies that $m^{2}+n^{2}=274$.

Answer: 274
6. Consider the ellipse with vertices at $(0,-6)$ and $(0,6)$ and passing through the point $(2,-4)$. Find the x-coordinate of the point where the ellipse intersects the positive x-axis.
Solution: The standard form of the equations of ellipses centered at (h, k) with vertical major axis is

$$
\frac{(x-h)^{2}}{b^{2}}+\frac{(y-k)^{2}}{a^{2}}=1 .
$$

The center is the middle point of the line segment connecting the vertices so in this case it is the origin. The distance between the vertices is $2 a$ so we get $2 a=12 \Rightarrow a=6$. This implies that an equation of the ellipse is $\frac{x^{2}}{b^{2}}+\frac{y^{2}}{36}=1$. Using the fact that the point $(2,-4)$ is on the ellipse we get that

$$
\frac{4}{b^{2}}+\frac{16}{36}=1 \Rightarrow b^{2}=\frac{36}{5} \Rightarrow b=\frac{6}{\sqrt{5}} .
$$

Answer: $\frac{6}{\sqrt{5}}$ or $\frac{6 \sqrt{5}}{5}$
7. Find the sum of all distinct real solutions of the equation

$$
\left(3 x^{2}-4 x+1\right)^{3}+\left(x^{2}+4 x-5\right)^{3}=64\left(x^{2}-1\right)^{3} .
$$

Solution: If we denote $a=3 x^{2}-4 x+1$ and $b=x^{2}+4 x-5$ then $a+b=4 x^{2}-4=4\left(x^{2}-1\right)$. So the above equation becomes $a^{3}+b^{3}=(a+b)^{3} \Leftrightarrow 3 a b(a+b)=0 \Leftrightarrow a=0$ or $b=0$ or $a+b=0$. This means $3 x^{2}-4 x+1=0$ or $x^{2}+4 x-5=0$ or $x^{2}-1=0$. The three quadratic equations yield the different solutions $x=-5, x=-1, x=\frac{1}{3}$, and $x=1$. Their sum is $-\frac{14}{3}$.

Answer: $-\frac{14}{3}$
8. Consider the quadrilateral $A B C D$ with $B D=10, B C=5, m \angle B A D=30^{\circ}, m \angle C D A=60^{\circ}$, and $m \angle A B D=m \angle B C D$. Find $C D$.

Solution: We extend the segments $A B$ and $D C$ until they intersect at the point E. By assumptions, the angle $m \angle A E D=90^{\circ}$.

Since $m \angle B C E=m \angle D B E$ we get that $\triangle B C E \sim \triangle D B E$, so $\frac{C E}{B E}=\frac{B C}{D B}=\frac{5}{10}$ which implies that $B E=2 C E$. Applying the Pythagorean Theorem in the right triangle $B C E$ we get $C E^{2}+(2 C E)^{2}=$ $5^{2} \Rightarrow C E=\sqrt{5}$ and $B E=2 \sqrt{5}$. Since $\frac{B E}{D E}=\frac{5}{10}$ as well, we have $D E=2 B E=4 \sqrt{5}$. Therefore, $C D=D E-C E=4 \sqrt{5}-\sqrt{5}=3 \sqrt{5}$.
Answer: $3 \sqrt{5}$
9. Let f be a differentiable function such that $f(x+h)-f(x)=3 x^{2} h+3 x h^{2}+h^{3}+2 h$ for all x and h and $f(0)=1$. If $g(x)=e^{-x} f(x)$, find $g^{\prime}(3)$.
Solution: We have

$$
\begin{aligned}
g^{\prime}(x) & =-e^{-x} f(x)+e^{-x} f^{\prime}(x), \\
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0}\left(3 x^{2}+3 x h+h^{2}+2\right)=3 x^{2}+2 \text { and } \\
f(x) & =x^{3}+2 x+f(0)=x^{3}+2 x+1 .
\end{aligned}
$$

Therefore, $g^{\prime}(3)=-34 e^{-3}+29 e^{-3}=-5 e^{-3}$.
Answer: $-5 e^{-3}$ or $-\frac{5}{e^{3}}$
10. Suppose that the lengths of the sides of a triangle are three consecutive integers. Find the perimeter of the triangle if we know that the perimeter is (numerically) half of the area of the triangle.
Solution: Let $x-1, x$ and $x+1$ be the lengths of the sides of the triangle, where x is an integer with $x>2$. Using Heron's Formula we can write

$$
A=\sqrt{\frac{3 x}{2} \cdot \frac{x+2}{2} \cdot \frac{x}{2} \cdot \frac{x-2}{2}}=\frac{x}{4} \sqrt{3\left(x^{2}-4\right)} .
$$

From the fact that $P=\frac{A}{2}$ we get

$$
3 x=\frac{x}{8} \sqrt{3\left(x^{2}-4\right)} \Rightarrow 192=x^{2}-4 \Leftrightarrow x^{2}=196 \Rightarrow x=14 \Rightarrow P=42 .
$$

Answer: 42
11. Find the length of the graph of the function $f(x)=\left(\frac{x}{2}\right)^{2}-\ln \sqrt{x}$ on the interval $[1, e]$.

Solution: The length is given by

$$
l(f)=\int_{1}^{e} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x
$$

We differentiate $f(x)$ and we get

$$
f^{\prime}(x)=\frac{x}{2}-\frac{1}{2 x} \Rightarrow 1+\left(f^{\prime}(x)\right)^{2}=\frac{1}{4}\left(x+\frac{1}{x}\right)^{2} .
$$

Therefore,

$$
l(f)=\frac{1}{2} \int_{1}^{e}\left(x+\frac{1}{x}\right) d x=\left.\left(\frac{x^{2}}{4}+\frac{\ln x}{2}\right)\right|_{1} ^{e}=\frac{e^{2}+1}{4}
$$

Answer: $\frac{e^{2}+1}{4}$
12. Find the sum (in radians) of the solutions in $[0,2 \pi]$ of the equation

$$
(\sqrt{3}+1) \cos x+(\sqrt{3}-1) \sin x=2 .
$$

Solution: Note that $\cos \frac{\pi}{12}=\frac{\sqrt{6}+\sqrt{2}}{4}$ and $\sin \frac{\pi}{12}=\frac{\sqrt{6}-\sqrt{2}}{4}$, which can be easily obtained from the fact that $\cos \frac{\pi}{6}=\frac{\sqrt{3}}{2}$ and the standard formulas for $\cos \frac{x}{2}$ and $\sin \frac{x}{2}$ via $\cos x$. Then our equation can be written as

$$
\frac{\sqrt{6}+\sqrt{2}}{4} \cos x+\frac{\sqrt{6}-\sqrt{2}}{4} \sin x=\frac{\sqrt{2}}{2} \Leftrightarrow \cos \frac{\pi}{12} \cos x+\sin \frac{\pi}{12} \sin x=\frac{\sqrt{2}}{2} \Leftrightarrow \cos \left(x-\frac{\pi}{12}\right)=\frac{\sqrt{2}}{2}
$$

Since $-\frac{\pi}{12} \leq x-\frac{\pi}{12} \leq \frac{23 \pi}{12}$, we get that $x-\frac{\pi}{12}=\frac{\pi}{4}$ or $x-\frac{\pi}{12}=\frac{7 \pi}{4}$. The solutions are $x_{1}=\frac{\pi}{3}$ and $x_{2}=\frac{11 \pi}{6}$. Their sum is $x_{1}+x_{2}=\frac{13 \pi}{6}$.

Answer: $\frac{13 \pi}{6}$
13. Find the limit

$$
L=\lim _{x \rightarrow \infty} \frac{\int_{0}^{x}(\arctan t)^{2} d t}{\sqrt{x^{2}+1}}
$$

Solution: From the Fundamental Theorem of Calculus we know that

$$
\frac{d}{d x} \int_{0}^{x}(\arctan t)^{2} d t=(\arctan x)^{2}
$$

Applying L'Hospital's Rule we get

$$
L=\lim _{x \rightarrow \infty} \frac{(\arctan x)^{2}}{\frac{x}{\sqrt{x^{2}+1}}}=\frac{\pi^{2}}{4} .
$$

Answer: $\frac{\pi^{2}}{4}$
14. Point A is chosen at random from the line segment joining $(0,0)$ and $(2,0)$ as the center of a circle of radius 1. Point B is chosen at random from the line segment joining $(0,1)$ and $(2,1)$ as the center of another circle of radius 1 . What is the probability that the two circles intersect?
Solution: Let the centers of the circles be $(a, 0)$ and $(b, 1)$. Then the circles intersect if and only if

$$
\sqrt{(a-b)^{2}+1} \leq 2 \Leftrightarrow(a-b)^{2} \leq 3 \Leftrightarrow-\sqrt{3} \leq a-b \leq \sqrt{3}
$$

The set of such (a, b) is the subset of the (a, b)-plane obtained by removing from the square $[0,2] \times[0,2]$ two right isosceles triangles with vertices $(2,0)$ and $(0,2)$ and legs of length $2-\sqrt{3}$.

The area of this region is $4-(2-\sqrt{3})^{2}=4 \sqrt{3}-3$. Therefore, the probability is this area divided by the area of the square, or $\frac{4 \sqrt{3}-3}{4}$.

Answer: $\frac{4 \sqrt{3}-3}{4}$
15. Let x_{1}, x_{2}, and x_{3} be the roots of the equation $x^{3}-x+1=0$. Find $x_{1}^{11}+x_{2}^{11}+x_{3}^{11}$.

Solution: We denote $s_{n}=x_{1}^{n}+x_{2}^{n}+x_{3}^{n}$ and we notice that s_{n} satisfies the recurrence relation $s_{n+3}=$ $s_{n+1}-s_{n}$ since x_{1}, x_{2}, and x_{3} are solutions of the equation $x^{3}=x-1$. Using Vieta's formulas we can write

$$
\begin{aligned}
& s_{1}=x_{1}+x_{2}+x_{3}=0, \\
& s_{2}=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=\left(x_{1}+x_{2}+x_{3}\right)^{2}-2\left(x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{1}\right)=2, \\
& s_{3}=x_{1}^{3}+x_{2}^{3}+x_{3}^{3}=x_{1}+x_{2}+x_{3}-3=-3 .
\end{aligned}
$$

Using the recurrence relation we get $s_{4}=s_{2}-s_{1}=2, s_{5}=s_{3}-s_{2}=-5, s_{6}=s_{4}-s_{3}=5, s_{7}=s_{5}-s_{4}=$ $-7, s_{8}=s_{6}-s_{5}=10, s_{9}=s_{7}-s_{6}=-12$ and $s_{11}=s_{9}-s_{8}=-22$.

Answer: -22
16. Find $\theta \in\left(0,180^{\circ}\right)$ such that

$$
\cot \theta=\frac{\left(1+\tan 1^{\circ}\right)\left(1+\tan 2^{\circ}\right)-2}{\left(1-\tan 1^{\circ}\right)\left(1-\tan 2^{\circ}\right)-2} .
$$

Solution: We are using the formulas

$$
\tan (\alpha+\beta)=\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta}, \quad \tan (\alpha-\beta)=\frac{\tan \alpha-\tan \beta}{1+\tan \alpha \tan \beta}
$$

to write

$$
\begin{aligned}
\cot \theta & =\frac{\tan 1^{\circ}+\tan 2^{\circ}+\tan 1^{\circ} \tan 2^{\circ}-1}{-\tan 1^{\circ}-\tan 2^{\circ}+\tan 1^{\circ} \tan 2^{\circ}-1}=\frac{\left(\tan 1^{\circ}+\tan 2^{\circ}\right)-\left(1-\tan 1^{\circ} \tan 2^{\circ}\right)}{-\left(\tan 1^{\circ}+\tan 2^{\circ}\right)-\left(1-\tan 1^{\circ} \tan 2^{\circ}\right)} \\
& =-\frac{\frac{\tan 1^{\circ}+\tan 2^{\circ}}{1-\tan 1^{\circ} \tan 2^{\circ}}-1}{\frac{\tan 1^{\circ}+\tan 2^{\circ}}{1-\tan 1^{\circ} \tan 2^{\circ}}+1}=\frac{-\tan 3^{\circ}+1}{\tan 3^{\circ}+1}=\frac{\tan 45^{\circ}-\tan 3^{\circ}}{1+\tan 45^{\circ} \tan 3^{\circ}}=\tan \left(45^{\circ}-3^{\circ}\right)=\tan 42^{\circ} .
\end{aligned}
$$

Therefore, $\theta=90^{\circ}-42^{\circ}=48^{\circ}$.
Answer: 48°
17. Find the sum

$$
\sum_{n=1}^{84} \frac{1}{\sqrt{2 n+\sqrt{4 n^{2}-1}}}
$$

Solution: We try to write

$$
\sqrt{2 n+\sqrt{4 n^{2}-1}}=\sqrt{a}+\sqrt{b} .
$$

After squaring both sides we get

$$
2 n+\sqrt{4 n^{2}-1}=a+b+2 \sqrt{a b}
$$

and by taking the system $a+b=2 n$ and $4 a b=4 n^{2}-1$ we obtain one solution $a=n+\frac{1}{2}$ and $b=n-\frac{1}{2}$. Therefore, the following identity is true

$$
\frac{1}{\sqrt{2 n+\sqrt{4 n^{2}-1}}}=\frac{1}{\sqrt{n+\frac{1}{2}}+\sqrt{n-\frac{1}{2}}}=\sqrt{n+\frac{1}{2}}-\sqrt{n-\frac{1}{2}},
$$

which implies that

$$
\begin{aligned}
S_{m} & =\sum_{n=1}^{m} \frac{1}{\sqrt{2 n+\sqrt{4 n^{2}-1}}}=\left(\sqrt{\frac{3}{2}}-\sqrt{\frac{1}{2}}\right)+\left(\sqrt{\frac{5}{2}}-\sqrt{\frac{3}{2}}\right)+\left(\sqrt{\frac{7}{2}}-\sqrt{\frac{5}{2}}\right) \\
& +\cdots+\left(\sqrt{m+\frac{1}{2}}-\sqrt{m-\frac{1}{2}}\right)=\sqrt{m+\frac{1}{2}}-\sqrt{\frac{1}{2}}=\frac{1}{\sqrt{2}}(\sqrt{2 m+1}-1) .
\end{aligned}
$$

From here we get that $S_{84}=\frac{1}{\sqrt{2}}(\sqrt{169}-1)=6 \sqrt{2}$.
Answer: $6 \sqrt{2}$ or $\frac{12}{\sqrt{2}}$
18. Evaluate the limit

$$
L=\lim _{n \rightarrow \infty}\left(\lim _{x \rightarrow 0}\left(1+\tan ^{2} x+\tan ^{2} 2 x+\cdots+\tan ^{2} n x\right)^{\frac{1}{n^{3} x^{2}}}\right) .
$$

Solution: Let $f(x)=\tan ^{2} x+\tan ^{2} 2 x+\cdots+\tan ^{2} n x$. Then $\lim _{x \rightarrow 0} f(x)=0$ and $\lim _{x \rightarrow 0}(1+f(x))^{\frac{1}{f(x)}}=e$.
Next we see that

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{f(x)}{x^{2}} & =\lim _{x \rightarrow 0}\left[\left(\frac{\tan x}{x}\right)^{2}+2^{2}\left(\frac{\tan 2 x}{2 x}\right)^{2}+\cdots+n^{2}\left(\frac{\tan n x}{n x}\right)^{2}\right] \\
& =1^{2}+2^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6} .
\end{aligned}
$$

Therefore,

$$
L=\lim _{n \rightarrow \infty}\left\{\lim _{x \rightarrow 0}\left[(1+f(x))^{\frac{1}{f(x)}}\right]^{\frac{f(x)}{x^{2}}}\right\}^{\frac{1}{n^{3}}}=\lim _{n \rightarrow \infty} e^{\frac{n(n+1)(2 n+1)}{6 n^{3}}}=e^{\frac{1}{3}} .
$$

Answer: $e^{\frac{1}{3}}$ or $\sqrt[3]{e}$
19. Consider the sequence with general term

$$
a_{n}=\sum_{k=1}^{n}\binom{n}{k}^{2} .
$$

Find $\lim _{n \rightarrow \infty} \sqrt[n]{1+a_{n}}$.

Solution: By representing the coefficient of x^{n} in two ways via the identity $(1+x)^{2 n}=(1+x)^{n}(1+x)^{n}$ we get

$$
\sum_{k=0}^{n}\binom{n}{k}^{2}=\binom{2 n}{n}
$$

which implies that $1+a_{n}=\binom{2 n}{n}$. Next we use the Cauchy-D'Alembert Criterion to obtain

$$
\lim _{n \rightarrow \infty} \sqrt[n]{1+a_{n}}=\lim _{n \rightarrow \infty} \sqrt[n]{\binom{2 n}{n}}=\lim _{n \rightarrow \infty} \frac{\binom{2 n+2}{n+1}}{\binom{2 n}{n}}=\lim _{n \rightarrow \infty} \frac{(2 n+1)(2 n+2)}{(n+1)^{2}}=4
$$

Answer: 4
20. Evaluate the integral

$$
I=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin 2 x \ln \left(1+2^{\sin x}+3^{\sin x}+6^{\sin x}\right) d x
$$

Solution: If f is a continuous and even function on $[-1,1]$ and $a>0$ then

$$
\int_{-1}^{1} \frac{a^{x} f(x)}{1+a^{x}} d x=\int_{-1}^{0} \frac{a^{x} f(x)}{1+a^{x}} d x+\int_{0}^{1} \frac{a^{x} f(x)}{1+a^{x}} d x=\int_{0}^{1} \frac{a^{-x} f(x)}{1+a^{-x}} d x+\int_{0}^{1} \frac{a^{x} f(x)}{1+a^{x}} d x=\int_{0}^{1} f(x) d x
$$

(the latter equality follows from the identity $\frac{a^{-x}}{1+a^{-x}}=\frac{1}{1+a^{x}}$). Using this and integration by parts we get

$$
\begin{aligned}
\int_{-1}^{1} x \ln \left(1+a^{x}\right) d x & =\left.\frac{x^{2}}{2} \ln \left(1+a^{x}\right)\right|_{-1} ^{1}-\frac{\ln a}{2} \int_{-1}^{1} \frac{x^{2} a^{x}}{1+a^{x}} d x \\
& =\frac{1}{2} \ln (1+a)-\frac{1}{2} \ln \left(1+\frac{1}{a}\right)-\frac{\ln a}{2} \int_{0}^{1} x^{2} d x=\frac{1}{2} \ln a-\frac{1}{6} \ln a=\frac{1}{3} \ln a .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
I & =\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 2 \sin x \ln \left(\left(1+2^{\sin x}\right)\left(1+3^{\sin x}\right)\right) \cos x d x \\
& =\int_{-1}^{1} 2 u\left[\ln \left(1+2^{u}\right)+\ln \left(1+3^{u}\right)\right] d u=2 \int_{-1}^{1} u \ln \left(1+2^{u}\right) d u+2 \int_{-1}^{1} u \ln \left(1+3^{u}\right) d u=\frac{2}{3} \ln 6
\end{aligned}
$$

Answer: $\frac{2}{3} \ln 6$

