
TAMU 2014 Freshman-Sophomore Math Contest

Freshman Version

While the name of the contest is traditional, the actual eligibility rules are
that first year students take the freshman contest, and second year students
take the sophomore contest. That way, students who have accummulated
enough credit hours in their first or second year to have standing as sopho-
mores, or juniors, are not promoted out of eligibility.

The first page contains problems built around Calculus I and II for both
freshmen and sophomores. The second pages are pitched to content unique
to Calculus III and/or Differential Equations, in the case of the sophomore
contest.

In all cases, solutions should be written out and should include reasoning
behind the steps when reasons beyond routine calculation are involved. No
tables, calculators, or computers, and no devices for communication with the
outside world, are allowed. You’re on your own.

1. Find
∫

1

x=0

1

x+
√
x
dx.

This one wasn’t all that bad if you saw the substitution u2 = x. The
integral becomes

∫

1

u=0

2u du

u2 + u
= 2

∫

1

u=0

du

u+ 1
= 2

∫

2

v=1

dv

v
= 2 ln 2.

2. Find the coefficient of x4 in the power series expansion (that is, the
Taylor’s series expansion about a = 0) of esinx.

We have eu = 1 + u+ 1

2!
u2 + 1

3!
u3 + 1

4!
u4 + · · · , and sin x = x− 1

3!
x3 +

1

5!
x5 − · · · . Putting these together by substitution gives
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(
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6
+ x

5

120
− · · ·
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The term 1 is not part of the answer. The next term contains all odd
powers of x, so it’s not part of the answer either. If you multiply out

1

2!

(

x− x
3

6
+ x

5

120
− · · ·

)2

and extract the x4 term, it works out to −x4/6. The term involving
u3 again consists of odd powers of x, which leaves the u4 term. It
contributes x4/24, so the coefficient on x4 overall is

−
1

6
+

1

24
= −

1

8

and that’s the answer.

There’s another approach involving taking derivatives. The coefficient
is 1/4! times the 4th derivative evaluated at 0. Writing s for sin x and
c for cosx, the fourth derivative works out to es(c4 − 3c3 + c2) plus
terms that involve s—and those terms are irrelevant to the evaluation
at x = 0. Again we get −1/8.

3. Let

f(x) =

∫

2

t=1

1

t+ x2t3
dt.

Find f ′(x) and, in particular, find the exact numerical value of f ′(x)
at x = 1.

This integral can be hammered out, and it comes to an expression in x
which can then be differentiated. But there’s a trick solution as well.
Write u = xt and then du = x dt and the original becomes

f(x) =

∫

2x

u=x

du

u+ u3
.

By the fundamental theorem of calculus and the chain rule, the deriva-
tive with respect to x is thus

f ′(x) =
2

2x+ (2x)3
−

1

x+ x3
.

Taking x = 1 gives f ′(1) = 2

10
− 1

2
= − 3

10
.
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4. Sketch the graph of

g(x) = e− tanx sin(tanx)

on the interval 0 ≤ x ≤ π/2, and find the maximum value of g(x) on the
interval, as well as the place or places where that maximum is achieved.
The technically accurate figure, thanks to a computer algebra system,
looks like this:
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but that’s not quite the whole of the story. Submerged beneath the fact
that the exponential is tailing off so fast is the fact that the function in
question is, on a small scale, wiggling ever faster. So it goes back and
forth between positive and negative infinitely many times, only, back
and forth only a little.

As to the maximum value, as x ranges from 0 to π/2, tan x ranges
from 0 to ∞. So what we’re really looking for is the maximum value
of e−u sin u over u ≥ 0.

The maximum will not be reached at either end, because at 0 the
function is 0 and as u tends to ∞ again it goes to 0. So it must occur
at some point in the middle where the derivative is zero. That happens
exactly when sin u = cosu, and that happens at π/4 + nπ. The first
such u is best because for larger u, the exponential factor hurts. When
u = tan x = π/4, x = tan−1 π/4 and that’s the answer.

5. The graph of x2 − 2xy − 4y2 = 9 is a hyperbola.
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(a) Sketch the graph and find the equations of its asymptotes.
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The asymptotes are given by x2 − 2xy − 4y2 = 0. There are two
lines. The lines are

y =
−1±

√
5

4
x.

(b) Find a point on the curve that is nearest the y-axis.

We are trying to minimize x subject to x > 0 and x2−2xy−4y2 =
9. The minimum will occur when dy/dx = ∞ or when dx/dy = 0.
Differentiating the equation with respect to y and thinking of x
as a function of y, we get dx/dy = (x+ 4y)/(x− y). This is zero
when = −4y. So we have to solve x = −4y together with x > 0
and x2 − 2xy − 4y2 = 9. That gives y = ±

√

9/20 and so our

answer is x = 4
√

9/20 = 6/
√
5.

6. The radius of the earth is (about, but please use this figure) 5 ∗ 106

meters. A cable of unobtanium massing 1kg/meter is hung from a tower
(built of the same stuff) 107 meters tall. For your convenience, the
earth has been made to stop spinning for the duration of this problem.
(If your head is spinning, that’s your problem.) The acceleration due
to gravity at the earth’s surface is (about, but please use this figure)
10m/s2. Work is measured in joules. (That is, 1j = 1kgm2/s2. One
joule is the energy needed to accelerate 1 kg to a speed of 1 meter per
second.)

How much work would it take to winch up the whole cable to the top
of the tower? Take into account that the force of gravity is inversely
proportional to the distance from the center of the earth.
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Let’s take x to be the distance to the center of the earth from whereever
we’re talking about. The base of the tower has elevation 5 ∗ 106. The
top has elevation 15 ∗ 106. A meter of cable at elevation s (measuring
from the center) weighs 10(5 ∗ 106)2s−2 newtons and costs that many
joules to lift one meter.

The cable, once it’s been winched up to where its lower end is x meters

from the center, weighs F (x) =
∫

15∗106

s=x
10(5 ∗ 106)2s−2 ds newtons, in

the sense that that’s how much force is needed to keep it going up as
you winch. This integral, apart from the messy constants, is simple
enough and it evaluates to

F (x) = 5 ∗ 1013
(

1

x
−

1

15 ∗ 106

)

.

The total work needed, in joules, is thus

∫

15∗106

x=5∗106

F (x) dx = 5 ∗ 1013
(

ln 3−
2

3

)

.

Remark: serious thought has been given to building very large cables.
No one sees any hope of building a device of the sort described here,
but a cable stretching from the surface of a miniature planet or small
moon that was spinning at a convenient rate might be doable at some
point in the distant future. It’d have to vary in thickness, and the
challenges of computing its behavior would be considerable.
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