

Figure 1: Graph of damped cosine wave

Solutions for the Texas A\&M Freshman-Sophomore Contest 2017

Second year student version

There are two pages, six problems. The first three problems are common to both versions.

1. Let $f(x)=\cos (x) e^{-x^{2} /\left(4 \pi^{2}\right)}$.
(a) Sketch the graph of $f(x)$ over the interval $[-4 \pi, 4 \pi]$.
(b) Find the derivative of $f(x)$ at $x=\pi$ and simplify fully. The product rule and the chain rule come into play because f is the product of $\cos x$ and $e^{-x^{2} / 4 \pi^{2}}$. The derivative works out to $\left(-x \cos x /\left(2 \pi^{2}\right)-\right.$ $\sin x) e^{-x^{2} / 4 \pi^{2}}$. Setting $x=\pi$ zeroes out the sine term and the answer is $\frac{1}{2 \pi} e^{-1 / 4}$.
2. The identity $\cos (2 t)=2 \cos ^{2}(t)-1$ has some curious consequences.
(a) Express $\cos (4 t)$ in terms of $\cos t$. It's $8 \cos ^{4}(t)-8 \cos ^{2} t+1$.
(b) Sketch the graph of $y=x^{4}-x^{2}+\frac{1}{8}$ on the interval $-1 \leq x \leq 1$, and find the minimum value of y and where it occurs. The minimum value is $-1 / 8$ because of the first two parts, which imply that this polynomial is $(1 / 8) \cos \left(4 \cos ^{-1} x\right)$. The minimum value occurs at $x= \pm 1 / \sqrt{2}$ because the derivative is $2 x\left(2 x^{2}-1\right)$ which is zero at those places and at zero. But at 0 , the original polynomial evaluates to positive. Because of the tie-in with the cosine function, the graph runs back and forth between $-1 / 8$ and $1 / 8$; the maximum occurs at 0 and at ± 1, while the minimum occurs at $\pm 1 / \sqrt{2}$. (Polynomials that agree on $[-1,1]$ with $\cos \left(n \cos ^{-1} x\right)$ are called Chebyshev polynomials and have all sorts of interesting properties, not just the one that defines them.)

Figure 2: Graph of Cheybshev-type polynomial
3. Take as given the power series expansion

$$
e^{z}=\sum_{n=0}^{\infty} \frac{z^{n}}{n!}
$$

Find in closed form

$$
A=1+\sum_{k=1}^{\infty} \frac{(-1)^{k}}{(2 k)!} \frac{(2 k-1)!}{(k-1)!2^{2 k-1}}
$$

The $(2 k-1)$! in the numerator cancels all of the $(2 k)$! in the denominator except for its final factor $2 k$. Putting the 2 here with the $2^{2 k-1}$ gives that

$$
A=1+\sum_{k=1}^{\infty} \frac{(-1)^{k} 2^{-2 k}}{k!}=e^{-1 / 4}
$$

this last by the series expansion for e^{z} specialized to the case $z=-1 / 4$.
4. A triangular field is overgrown with tumbleweeds. They're all over the field, as thick in one part of the field as in any other.
It's a right-triangle shape, with the right-angle corner at Zed's Crossroads. The field extends North 1 mile along 0th avenue, and one mile East along 0th street, and the third side, the hypotenuse, cuts across at a 45 degree angle to both roads to complete the triangle. The field thus has an area of half a square mile.

It's fenced on all sides. One night there's a storm, with a strong West wind. All the tumbleweeds break loose and roll across the field, heading East, until they hit the fence. What is the average distance traveled by a tumbleweed that night?
The average value of a quantity in a region is the integral of that quantity divided by the area (or length, or volume, as the case may be) of the region. Here, the region is a triangle with area $1 / 2$ (in square miles) and the quantity is given by the function of (x, y) which gives the distance to the fence going East. Along the fence, $y=1-x$, so the distance traveled
by a tumbleweed that starts at (x, y) inside the field is $(1-y-x)$ (as the tumbleweed drifts, x increases from whatever it was originally to a final value of $(1-y))$. So the answer will be given by

$$
\begin{aligned}
A & =2 \int_{x=0}^{1} \int_{y=0}^{1-x}(1-x-y) d y d x \\
& =\left.2 \int_{0}^{1}\left((1-x) y-\frac{1}{2} y^{2}\right)\right|_{0} ^{1-x} d x=2 \int_{0}^{1}\left((1-x)^{2}-\frac{1}{2}(1-x)^{2}\right) d x=\frac{1}{3}
\end{aligned}
$$

The average tumbleweed travels $1 / 3$ of a mile before hitting the fence.
5. Find

$$
\int_{B}{\frac{x^{2}}{x^{2}+y^{2}+z^{2}}}^{5 / 4} d V
$$

where B is the solid ball $x^{2}+y^{2}+z^{2} \leq 1$. By symmetry, the integral would be the same if the numerator were y^{2} or z^{2} instead of x^{2}. Thus, the original integral is

$$
\frac{1}{3} \int_{B}\left(x^{2}+y^{2}+z^{2}\right)^{-1 / 4} d V
$$

Passing to spherical coordinates, this becomes

$$
\frac{1}{3} \int_{\theta=0}^{2 \pi} \int_{\phi=0}^{\pi} \int_{r h o=0}^{1}(\rho)^{-1 / 2} \cdot \rho^{2} \sin \phi d \rho d \phi d \theta
$$

The inner integral evaluates to $(2 / 15) \sin \phi$. Next, $\int_{0}^{\pi}(2 / 15) \sin \phi d \phi=$ $4 / 15$. Finally, $\int_{0}^{2 \pi}(4 / 5) d \theta=8 \pi / 15$. The answer is $8 \pi / 15$.
Without the help of this symmetry the technical calculations become more difficult. The spherical-coordinates version of the integral becomes

$$
\int_{\theta=0}^{2 \pi} \int_{\phi=0}^{\pi} \int_{r h o=0}^{1}(\rho \sin \phi \cos \theta)^{2} \rho^{-5 / 2} \cdot \rho^{2} \sin \phi d \rho d \phi d \theta
$$

Once again one must integrate $\rho^{3 / 2}$, but then one must work through integrating $\sin ^{3} \phi \cos ^{2} \theta$. Here, the trigonometric identities $\cos ^{2} \theta=(1+$ $\cos \theta) / 2$ and $\sin ^{3} \phi=\sin (\phi) \sin ^{2} \phi=\sin (\phi)\left(1-\cos ^{2} \phi\right)$ come in handy. This last one allows for a substitution $u=\cos (\phi)$ that turns the trigonometric integral into an integral along the lines of $\int_{0}^{1}\left(1-u^{2}\right) d u$. The upshot is again $8 \pi / 15$, as it must be because correct solutions, be they elegant or straightforward, must in the end arrive at the same answer.
6. Consider an 8×8 square $S=[0,8] \times[0,8]$. A knight can occupy any point of the square; the coordinates don't have to be whole numbers. The knight can move to any point inside the square such that one coordinate of that new point differs by 2 from the old coordinate, and the other differs by 1 .

Let $F(x, y)$ be the number of points to which the knight can move from (x, y). Thus $F(0.3, .2 .1)=4$ because the points available to a knight there are $(1.3,0.1),(1.3,4.1),(2.3,1.1)$, and $(2.3,3.1)$.
Find $\int_{S} F(x, y) d y d x . \quad F(x, y)$ can be seen as the sum of eight simpler functions, each taking the value 1 if a particular knight move is legal and 0 otherwise. For each of these eight functions, the region where it takes the value 1 is a rectangle 6 by 7 , so the integral of each of them is just the area of that rectangle. Eight copies of 42 give an integral of 336 .

