
TAMU Freshman-Sophomore Contest, 2016
First-year students’ version

While the name of the contest is traditional, the actual eligibility rules are
that first year students take the freshman contest, and second year students
take the sophomore contest. That way, students who have accumulated enough
credit hours in their first or second year to have standing as sophomores, or
juniors, are not promoted out of eligibility.

The first page contains problems built around Calculus I and II for both
freshmen and sophomores. The second page is again pitched to content partic-
ular to Calculus I and II, in the case of first-year students.

In all cases, solutions should be written out and should include reasoning
behind the steps when reasons beyond routine calculation are involved. No
tables, calculators, or computers, and no devices for communication with the
outside world, are allowed. You’re on your own.

1. Find
∫ π/2

0
cos x cos 2x dx. The identity cos(a + b) = cos a cos b− sin a sin b,

applied to the cases a = 2x, b = x and a = 2x, b = −x yields cos 2x cos x =
1
2 (cos 3x + cos x). Integrating this from 0 to π/2 gives an answer of
1
2 (sin 3x/3 + sinx|π/2

0 = 1
3 . The answer is 1/3.

For another solution, the same identity for cos(a+ b) is applied instead to
the case a = b = x, so that cos x cos 2x = (cos x)(cos2 x− sin2 x). But now

∫ π/2

x=0

(cos x)(cos2 x − sin2 x) dx =

∫ π/2

x=0

(1 − 2 sin2 x) cos x dx

=

∫ 1

u=0

(1 − u2) du = 1 − 2

3
=

1

3

by way of the substitution u = sinx, du = cos x dx. Which is the better
solution? From one perspective, the second solution is best. It’s shorter
and easier to understand. From another perspective, the first solution is
best because it can be adapted to a wider variety of similar cases, such as
cos(2x) cos(3x).

2. Let f(x) = x
1+x2 . Let g(x) be the 19th derivative of f(x). Find g(0)

20! .
Probably the best way to work this is to first get the series expansion of
f(x) about 0. The series 1/(1− z) = 1+ z + z2 + · · · , with z = −x2, gives

x
1+x2 = x− x3 + x5 − x7 · · · + x17 − x19 + · · · . Taking the 19th derivative
term by term, as we may do inside the radius of convergence, which is 1
here, gives

f (19)(x) = −19! +
21!

2!
x2 − 23!

4!
x4 − · · ·

and setting x = 0 and dividing by 20!, the answer is −1/20.
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3. Let u(x) = sin(8x)e−x2

.

(a) Graph u(x) on the interval −π/2 ≤ x ≤ π/2.
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(b) Given that
∫

∞

0
tke−t dt = k! for all nonnegative integers k, prove that

∫

∞

0

u(x) dx =
1

2

∞
∑

k=0

(−1)k k!82k+1

(2k + 1)!
.

Here we need to break up sin(8x) into its power series, but not break

up e−x2

. A truly careful proof must address matters of convergence,
and that can be done here by cutting off the series at some point N
and then proving that the rest of the series is at any rate bounded
between what one would get with all the terms positive from then on,
and with all of them negative, and that both bounds tend to zero.

For all x, sin(8x) =
∑

∞

k=0. For any positive integer N , this can be

split as sin(8x) = (
∑N

k=0 +
∑

∞

k=N+1(−1)k(8x)2k+1/(2k + 1)!. Let
the first sum be SN (x) and the second sum be RN (x), as in sum and
remainder. We have |Rn(x)| ≤ ∑

∞

k=N+1(8x)2k+1/(2k + 1)!. Now
let’s get down to the mechanics.

∫

∞

0

SN (x) dx =

∫

∞

0

N
∑

k=0

(−1)k82k+1x2k+1e−x2

/(2k + 1)! dx

=
N

∑

k=0

(

(−1)k82k+1/(2k + 1)!
)

∫

∞

x=0

x2k+1e−x2

dx

=
1

2

N
∑

k=0

(

(−1)k82k+1/(2k + 1)!
)

∫

∞

u=0

uke−u du

=
1

2

N
∑

k=0

(−1)k82k+1 k!

(2k + 1)!
.
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Also,
∫

∞

0
RN (x) dx <

∑

∞

k=N+1 82k+1 k!
(2k+1)! , because with every-

thing positive, we can switch summation and integration with con-
fidence. If any version converges then the others do as well, and all
of them, with absolute convergence. For N > 10, say, each term is
less than half the one before it in this sum, so the total is less than

twice the first term. That is,
∫

∞

0
RN (x) dx < 2 ·82(N+1)+1 (N+1)!

2N+3)! , an

expression which tends to 0 rapidly as N tends to infinity because
the factorial of 2N + 3 dominates.

So for all N ,
∫

∞

0
u(x) dx =

∫

∞

0
SN (x) + RN (x) dx. The first integral

evaluates to an expression whose limit is the claimed answer, and the
second integral evaluates to an expression whose limit is 0. We are
done.

4. Find
∫

∞

−∞

dt

(1 + t2)3/2
.

With t = tan θ, the integral becomes
∫ π/2

θ=−π/2
sec2 θ

(1+tan2 θ)−3/2
dθ. But this

simplifies to
∫ π/2

θ=−π/2
cos(θ) dθ = 2. So the answer is 2.

5. Let 〈an〉 be the sequence given by a0 = 0, a1 = 1, and an = 2an−1 +an−2.

(a) Find a6. It’s 70. On the way, a2 = 2, a3 = 5, a4 = 12, and a5 = 29.

(b) Taking as given, for the time being, that the limit exists, find

lim
n→∞

an+1

an
.

Say L is the limit. Then eventually, an+1/an and an/an−1 are both
arbitrarily close to L. So an+1/an − an/an−1 is close to 0. But
an+1/an = 2 + an−1/an, so L is close to 2 + 1/L. Arbitrarily close.
But that means L = 2+1/L. Multiply the equation by L and use the
quadratic formula to conclude that L = (2±

√
8)/2 = 1±

√
2. But L

must be positive because all the an are positive. Thus L = 1 +
√

2.

(c) Prove that the limit exists. Begin with some simple observations:
first, that an+1 > an and so 〈an〉 → ∞ as n → ∞. Next, a look at the
first few numbers and some tinkering discloses a pattern: an+1an−1−
a2

n = (−1)n. This requires proof to be used, so here’s a proof by
induction.

The statement holds for 1 ≤ n ≤ 5 by direct arithmetic. (For in-
stance, when n = 5, 70 ∗ 12 − 292 = 840 − 841 = −1 = (−1)5.)
Now suppose it holds for 1 ≤ n ≤ N . We have to prove it also
holds for n = N + 1. That is, we must show that aN+2aN − a2

N+1 =
(−1)N+1. We have aN+2 = 2aN+1 + aN , and aN+1 = 2aN + aN−1

and aN+1aN−1 − a2
N = (−1)N . Thus

aN+2aN − a2
N+1 = (2aN+1 + aN )aN − aN + 1(2aN + aN−1)

= a2
N − aN+1aN−1 = −(−1)N .
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The induction is now complete. Now consider the sequence of dif-
ferences an+1/an − an/an−2. This simplifies to (−1)n/(anan−1).
But that’s an alternating sequence whose terms decrease to zero.
The sequence an+1/an goes up some, then down less, then up still
less, and so on, forever. An increasing, bounded sequence such as
〈a2n/a2n−1 must have a limit, and a decreasing, bounded sequence
such as 〈a2n+1/a2n also has a limit, and since the two sequences are
separated by an amount that tends to zero, those two limits are the
same, both equal to L.

6. Let A0 = 1, B0 = 2. For n ≥ 1, let

An =
√

An−1Bn−1, Bn = 1
2 (An−1 + Bn−1) .

(a) Find B2. It’s
√

2/3/4.

(b) Prove that for n ≥ 1, Bn − An < (Bn−1 − An−1)
2. Proof. It will

be sufficient to prove that if A,B ≥ 1 then ((A + B)/2 −
√

AB) <
(B − A)2. But

((A + B)/2 −
√

AB)((A + B)/2 +
√

AB) =
1

4
(B2 + 2AB + A2) − AB

=
1

4
(B − A)2.

Since (A + B)/2 +
√

AB ≥ 2,

((A + B)/2 −
√

AB) ≤ (1/8)(B − A)2.

(c) Make a reasoned guess as to the least n such that Bn −An < 10−100.
Explain your thinking.

Some arithmetic is needed to get started. We have A1 =
√

2 = 1.414,
roughly, and B1 = 1.5, so B1 −A1 < 1/10. Now B2 −A2 will be less
than 1/800, but not far less, because that factor of 1/8 cannot be
improved to 1/16 if you go back into the proof of the other problem
item.

So we expect something like B3 − A3 = 10−3, then B4 − A4 = 10−7,
then B5−A5 = 10−15, then B6−A6 = 10−31, then B7−A7 = 10−63,
and then B8 − A8 = 10−127. So 7 or 8 would be reasonable guesses.
(A more accurate calculation shows that in reality it’s 7, rather than
8. A guess of 9 would not have been altogether unreasonable. That’s
what you’d think going merely on the answer to the previous part.
The moral of the story is that it often pays to use not just a result,
but to look inside the result at the proof and use that.
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