
TAMU 2008 Freshman-Sophomore Math Contest
First-year student version

There are five problems, each worth 20% of your total score. This is not an
examination, and a good score, even a winning score, can be well short of solving
all five problems completely. See what you can do with these. Rules: No laptop
computers, no calculators, no cell phones or other means of communicating with
the outside. You’re on your own for the duration of the contest. Blank paper
and pencils are provided.

1. Show that
∫ 2π

u=0

sin u

u
du = π

∫ π

u=0

sin u

u(π + u)
du.

Let A be the integral on the left, and B, the integral on the right. We
have

A =

∫ 2π

0

sin u

u
du =

∫ π

0

sin u

u
du +

∫ 2π

π

sinu

u
du.

The second integral is, by a change of variable replacing u with u−π, equal
to

∫ π

0
sin(u+π)/(u+π) du. Now sin(u+π) = sin(u) cos(π)+sin(π) cos(u) =

− sin(u). Thus

A =

∫ π

0

sin u

(

1

u
− 1

u + π

)

du =

∫ π

0

sin u

(

π + u

u(u + π)
− u

u + π

)

du = B.

2. Let

F (x) =

∫ 4x2

x2

sin(
√

t) dt.
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(Graph of F (x))

(a) Find all critical points of F between 0 and 2π. There are two natural
ways to go at this. One would be to evaluate the integral, (substitu-
tion, t = s2), then take the derivative, then work out what values of
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x give a derivative of zero. The other, which we choose here, would
be to find the derivative without doing the integral, with the rest of
the plan being the same.

The fundamental theorem of calculus says that d
dx

∫ x

a
f(t) dt = f(x)

if f is continuous. Here, our integral has upper and lower limits that
are both variable, and they’re both functions of x, rather than simply
x. No matter. We use the chain rule. Thus,

d

dx

∫ 4x2

x2

f(t) dt = 8xf(4x2) − 2xf(x2).

Since here, f(x) = sin
√

x, we have F ′(x) = 8x sin(2x) − 2x sin(x).
Clearly this is zero at x = 0, π, and 2π. But from the graph, there
must be other points as well.

With the trigonometric identity sin 2x = 2 sinx cosx, we have F ′(x) =
2x sin x(8 cosx−1). Now the other two critical points pop into focus:
they’re the places where cosx = 1/8, and those are arccos(1/8) and
2π − arccos(1/8).

Remark: It may seem as though this solution merely kicks the ball
down the road, because we still don’t have a ‘real’ answer, like ‘7’
or ‘

√
2’. But the latter isn’t any more of a ‘real’ solution than

arccos(1/8). Both numbers are defined as inputs to a function that
will give a desired, simple output. If we want decimal digits for√

2, or for arccos(1/8), we will need something such as Newton’s
method, applied to x2 − 2 or cosx − 1/8, and some patience or a
computer, to pin down the details. For the record, arccos(1/8) is
about 1.4454684956268312224.

(b) Evaluate the integral and find a closed-form expression for F (x). We
need an indefinite integral for u sin u. Integration by parts is just the
trick, and it gives sinu − u cosu =

∫

u sinu du. So,

∫

8x sin 2xdx = 2

∫

u sinu du = 2(sin u − u cosu)

= 2(sin 2x − 2x cos 2x)

and
∫

2x sin x = −2x cosx + 2 sinx, and this gives F (x) = 2 sin 2x −
4x cos 2x + 2x cosx − 2 sinx. What about ‘+C’? We’re OK here
because F (0) = 0 from its definition, just like our answer gives.

3. Let

g(x) =

∞
∑

n=1

(−1)n−1xn

2n2
.

Here, the denominator is 2 to the power n2.

(a) Show that g(2) > 0, g(4) > 0, and g(8) > 0. One thing to keep in
mind is that an alternating series with terms that decrease in absolute
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value, and decrease to zero, converges, and that such a sum converges
to a value between 0 and its first term.

Our sum for g(x) is not like that, because the terms initially increase
in absolute value. However, we can strip off any finite number of
starting terms, and add those up separately, and then use this ob-
servation on the tail of the series. So, let a(x) be the sum of all the
terms with absolute value 1 or more, and b(x), the rest.

We have a(2) = 1, while b(2) = −2−2 + 2−6 − 2−12 · · · < 0. Thus,
g(2) < 0. For 4, we have a(4) = 1 − 1 = 0 and b(4) = 2−3 − 2−5 +
2−15 · · · > 0. For 8, we have a(8) = 4 − 4 + 1 > 0 and 0 < b(8) < 1,
so g(8) > 0.

(b) Show that g(16) < 0. We have

b(16) =

∞
∑

n=5

(−1)n−1(16n)/2n2

= 165/225 − 166/236 + · · · = 2−5 − 2−12 + 2−21 · · ·

so that 0 < b(16) < 1/32. As to a(16), it is 23 − 24 + 23 − 1 = −1.
With a(16) = −1 and b(16) < 1/32, it follows that g(16) < 0.

(c) Show that g(28) < 0. This will be subsumed into the last part.

(d) Generalize. That is, state when g(2k) is positive, and explain. g(2k)
is negative when k is a multiple of 4, and positive otherwise.

What seems to be happening is that the main stuff, a(x), consists of
a sum which is the same read forward and backward, apart from the
business of the alternating signs. This suggests rearranging the sum
so that its central term is the zeroth term, and the other terms are
the ±l terms, l running from minus somewhere, to plus the same.

When k = 4m, we have

a(2k) = 24m−1 − 28m−4 + 212m−9 + · · · + (−1)4m−1216m2
−(4m)2

=
4m
∑

j=1

(−1)j−124mj−j2

=
2m
∑

l=−2m+1

(−1)l−124m2
−l2 .

The term l = 0 is largest, and gives a negative value because of the
factor (−1)l−1. The terms l = ±1, taken together, cancel that out.
So, we are back to zero. But now the terms l = ±2 give a negative
contribution, and the terms l = ±3, if the sum goes that far, give a
smaller positive contribution, and so on out to the end. The terms
l = ±2 give 2 · 24m2

−4 which is an even positive integer. As we
observed at the outset, and alternating sum with terms that decrease
in absolute value yields a total with the same sign as the first term.
Thus, we get a negative integer for a(24m). As usual, |b(x)| < 1, so
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g(24m) < 0. We sketch the rest of the cases. If k = 4m + 1, we have

a(2k) =

4m+1
∑

j=1

(−1)j2(4m+1)j−j2

= −24m2+6m

2m+1
∑

l=−2m+1

(−1)l2l−l2

= −24m2+6m

2m+1
∑

l=1

[

(−1)l2l−l2 + (−1)1−l2(1−l)−(1−l)2
]

= −24m2+6m

2m+1
∑

l=1

(−1)l
[

2l−l2 − 2l−l2
]

= 0.

The main terms having canceled, the first term of b(x) rules, and
that is the k = 4m+2 term, which is positive. So g(24m+1) > 0. For
k = 4m + 2, the situation is just like it is for k = 4m, with a central
term canceled by its flanking pair of terms. But then, the largest
pair of surviving near-central terms, corresponding to k = 2m − 1
and k = 2m + 3, gives a positive contribution. Thus g(24m+2) > 0.
For k = 4m + 3, the terms pair off, with the middle pair being terms
number 2m + 1 and 2m + 2, except for the first term, which remains
unpaired. Thus a = 1, and as usual, b is too small to change the
verdict. g(24m+3) > 0.
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4. A girl walks along the edge of a 100 meter high cliff, going North at 1
meter per second, along a path 100 meters in length. Below, a ship keeps
even with her, but offshore (West), a distance of 10000/(100 + t) meters
at time t, starting at t = 0. Thus, initially, the line-of-sight distance from
girl to ship is

√
20000 meters. After 100 seconds, they’re both 100 meters

North of where they started, but the ship is only 50 meters clear of the
rocks, and the line-of-sight distance between girl and ship has diminished
to

√
12500 meters.

What is the average value of the distance from girl to ship over the duration
of her stroll?

(view from a seagull above and to the northwest of the path) At time t, her
North-South coordinates matches that of the ship. Her Up-Down coordi-
nate differs by 100. Her East-West coordinate differs by 10000/(100 + t),
so the overall distance at time t is

√

104 + 108/(100 + t)2. Making first
the substitution 100u = 100 + t, and then the substitution u = tan θ, the
average distance A is

A =
1

100

∫ 100

t=0

√

104 +
108

(100 + t)2
dt =

∫ 2

u=1

√

104 +
104

u2
du

= 100

∫ 2

1

√

u2 + 1

u2
du = 100

∫ arctan 2

θ=arctan 1

sec θ

tan θ
sec2 θ dθ

=

∫ arctan(2)

arctan(1)

sec3 θ/ tan θ dθ =

∫ b

a

csc θ + sec θ tan θ

= − log(csc θ + cot θ) + sec θ
∣

∣

b
a ,

where a = arctan1 = π/4, and b = arctan(2). Now in view of cot arctanx =
1/x, sec arctanx =

√
1 + x2, and csc arctanx =

√
1 + x2/x, this gives an

average distance of

100
(

− log(1 +
√

1 + x2) + log x +
√

1 + x2
∣

∣

2
1

)

= 100
(

(− log(1 +
√

5) + log 2 +
√

5) − (− log(1 +
√

2) +
√

2)
)

.
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Further whimsical question: is the girl’s name Lorelei? Why, or why not?

5. The region shown is bounded by the lines from the ship to the girl as she
walked the path, by lines from the shore at the base of the cliff below the
girl, to the ship, by the face of the cliff itself for that 100 meter stretch, and
by the triangles at either end of the region. Find the volume of the region
(in cubic meters.) The volume can be calculated several ways. Each of the
up-down/east-west cross sections is a triangle. The triangle at distance t
along the path has height 100, and base of length 10000/(100 + t). Thus
the volume is the integral of the triangle cross-section areas, and that is

5 · 105

∫ 100

0

1

100 + t
dt = 500 000 ln(2).
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