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Group Characters

I Let G be an abelian group. A character of G is a
homomorphism χ : G→ C∗.

I The set of characters of G form a group.

I A Dirichlet character of modulus m is a group character for
G = (Z/mZ)∗, or equivalently a multiplicative function
χ : Z→ C such that

(i) χ(n+m) = χ(n) for all n,

(ii) χ(n) = 0 for gcd(n,m) > 1.
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L-series

I If χ is a Dirichlet character, then the L-series of χ is
defined by the series

L(χ, s) =

∞∑
n=1

χ(n)

ns
, Re(s) > 1.

I Example: The Riemann zeta function is defined by

ζ(s) =

∞∑
n=1

1

ns
, Re(s) > 1.
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Functional Equation

I The L-series of a Dirichlet character χ extends to a
meromorphic function on the entire complex plane via
analytic continuation.

I This analytic continuation satisfies a functional equation of
the form s 7→ 1− s with central value L(χ, 1/2).

I Example: If we let ξ(s) = π−s/2Γ(s/2)ζ(s), then we have
the functional equation

ξ(s) = ξ(1− s)

and the central value is given by ζ(1/2).
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Our “set up”

I Fix a triple of integers (d, k,D) satisfying:

• d ≡ 1 (mod 4),

• k > 0, sign(d) = (−1)k−1,

• D > 0, D ≡ 7 (mod 8), gcd(d,D) = 1.

I Let K be the imaginary quadratic field K = Q(
√
−D).
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The Class Group

I If OK denotes the ring of integers of K, then K can be
considered as an OK-module. Denote the set of fractional
ideals of OK by IK .

I The set IK is an abelian group under multiplication;
denote the subgroup of “principal” ideals by PK , and set

Cl(K) = IK/PK .

I This is called the class group. It is finite, and its order (the
class number) is denoted h(−D).
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Canonical Hecke Characters

I A canonical Hecke character for some “distinguished
subgroup” ID of IK is, roughly speaking, a character
ψk : ID → C∗ which can be decomposed into a “finite part”
and “infinite part”, and satisfies

ψk((α)) = ±α2k−1 for (α,
√
−DOK) = 1.

I Given such a ψk, we can define its “quadradic twist” ψd,k.
We denote the set of all ψd,k by Ψd,k(D); there are exactly
h(−D) such characters.
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Hecke L-series

I To a canonical Hecke character ψ ∈ Ψd,k(D), we can assign
an L-series L(ψ, s), which converges for Re(s) > k + 1

2 .

I This Hecke L-series has an analytic continuation satisfying
a functional equation of the form s 7→ 2k − s,

L(ψ, s) = L(ψ, 2k − s),

I We are interested in the central value L(ψ, k), specifically
in determining whether it is zero or nonzero.
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Arithmetic Significance

I Let d = k = 1. Then our characters ψ ∈ Ψ1,1(D) naturally
correspond to canonical examples of Gross’s Q-curves over
K = Q(

√
−D). If A(D) is such an elliptic curve, then

L(A(D), s) =
∏

ψ∈Ψ1,1(D)

L(ψ, s).

I If L(ψ, 1) 6= 0 for some ψ ∈ Ψ1,1(D), then L(ψ, 1) 6= 0 for
all ψ ∈ Ψ1,1(D), hence L(A(D), 1) 6= 0.

I By known results towards the BSD conjecture, this implies
that the rank of A(D) is zero, and hence the group of
K-rational points is finite.
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Outlining our Goals

I Since #Ψd,k(D) = h(−D), by Siegel’s theorem

h(−D)�ε D
1
2
−ε

we have
#Ψd,k(D)�ε D

1
2
−ε.

I We would like to quantify the number of ψ ∈ Ψd,k(D) with
nonvanishing central value. Therefore we define

NVd,k(D) = #{ψ ∈ Ψd,k(D) : L(ψ, k) 6= 0}.
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Outlining our Goals

I We would like to find a bound of the form

NVd,k(D)� Dδk

for some δk > 0.

I Previous results of this form holding for all values of D
have been conditional on the GRH.

I Our work has involved eliminating the GRH hypothesis.
Doing so, we can no longer guarantee that our bound will
hold for all values of D, but we can guarantee that it will
be true “100 percent of the time”!

‘
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Definitions

I Let Sd,k be the set of all imaginary quadratic fields
K = Q(

√
−D) satisfying our conditions on (d, k,D), plus

some additional “local conditions”.

I Let Sd,k(X) be the subset of Sd,k such that D ≤ X.

I Let SNVd,k (X) be the subset of Sd,k(X) satisfying the bound

NVd,k(D)�ε D
1

2(2k−1)
−ε
.
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Main Results

Theorem

We have the asymptotic formula

#SNVd,k (X) = δd,kX +Od,k(X
1− 1

2(2k−1) )

as X →∞, for some explicit positive constant δd,k.
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Main Results

Theorem

We have the asymptotic formula

#SNVd,k (X)

#Sd,k(X)
= 1 +O(X

− 1
2(2k−1) )

as X →∞. In particular, the bound

NVd,k(D)�ε D
1

2(2k−1)
−ε

holds for 100% of imaginary quadratic fields K ∈ Sd,k.
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Outline of Proof
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Galois Orbit

We define the Galois group Gk = Gal(Q/K(ζ2k−1)), where
ζ2k−1 denotes a primitive 2k − 1st root of unity.

Then Gk acts on the set of characters Ψd,k(D) by

ψ 7→ ψσ, where ψσ = σ ◦ ψ for σ ∈ Gk,

and the Galois orbit of a character ψ is

Oψ = {ψσ : σ ∈ Gk}.
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Strategy of Proof

I First, we find one character ψ so L(ψ, k) 6= 0. We do so by
proving the following theorem:

Theorem

If D > 64d4(k + 1)4, there exists a ψ ∈ Ψd,k(D) such that
L(ψ, k) 6= 0.
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Strategy of Proof

I Then, we use results of Shimura to show that

L(ψ, k) 6= 0 ⇐⇒ L(ψσ, k) 6= 0

for all σ ∈ Gk.

I It follows that NVd,k(D) ≥ #Oψ.
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Strategy of Proof

Let Cl`(K) be the `−torsion subgroup of the class group Cl(K).

I By Rohrlich, we have that under certain “local conditions”,

#Oψ =
h(−D)

|Cl2k−1(K)|
.

I Now we want to find a lower bound of the form

h(−D)

|Cl2k−1(K)|
� Dδk

for some δk > 0.

21 / 1



Strategy of Proof

Let Cl`(K) be the `−torsion subgroup of the class group Cl(K).

I By Rohrlich, we have that under certain “local conditions”,

#Oψ =
h(−D)

|Cl2k−1(K)|
.

I Now we want to find a lower bound of the form

h(−D)

|Cl2k−1(K)|
� Dδk

for some δk > 0.

21 / 1



Strategy of Proof

Let Cl`(K) be the `−torsion subgroup of the class group Cl(K).

I By Rohrlich, we have that under certain “local conditions”,

#Oψ =
h(−D)

|Cl2k−1(K)|
.

I Now we want to find a lower bound of the form

h(−D)

|Cl2k−1(K)|
� Dδk

for some δk > 0.

21 / 1



Strategy of Proof

Recall that Siegel’s Theorem gives us the bound

h(−D)�ε D
1
2
−ε.

We want to find an upper bound of the form

|Cl2k−1(K)| � D
1
2
−δk+ε.

Combining such a bound with Siegel’s theorem would give

NVd,k(D) ≥ #Oψ � Dδk−ε.
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Bounding `-torsion in Class Groups

Theorem (Ellenberg and Venkatesh, 2005)

Assuming GRH,

|Cl`(K)| �ε D
1
2
− 1

2`
+ε.
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Theorem (Ellenberg, Pierce, Wood (2016))

The bound
|Cl`(K)| �ε D

1
2
− 1

2`
+ε

holds unconditionally for all imaginary quadratic fields K with
D ≤ X except an “exceptional set” of size O(X1− 1

2` ).
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Bounding the `-torsion subgroup

A restatement of the results of Ellenberg, Pierce, and Wood
(2016) yields

#{K : D ≤ X, |Cl`(K)| �ε D
1
2
− 1

2`
+ε}

#{K : D ≤ X}
= 1 +O(X−

1
2` ).
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Under our particular conditions...

Recall that Sd,k is the set of all imaginary quadratic fields
K = Q(

√
−D) that satisfy our conditions on (d, k,D), along

with some “local conditions”.

We incorporate our local conditions into the work of Ellenberg,
Pierce, and Wood to get an asymptotic formula for the number
of imaginary quadratic fields K with D ≤ X that satisfy our
conditions:

#Sd,k(X) = δd,kX +O(X
1
2 )

for an explicit constant δd,k.
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Let STord,k denote the subset of Sd,k such that the torsion bound

is satisfied, i.e., |Cl`(K)| �ε D
1
2
− 1

2`
+ε.

We prove that if K is in the set STord,k , then

NVd,k(D) ≥ #Oψ � D
1

2(2k−1)
−ε
.

Thus, STord,k is a subset of SNVd,k , the set of fields in Sd,k with

NVd,k(D)�ε D
1

2(2k−1)
−ε
.

27 / 1



Finding an Asymptotic Formula

We can decompose Sd,k(X) into the disjoint union of SNVd,k (X)

and its complement, S−d,k(X). Then,

#SNVd,k (X) = #Sd,k(X)−#S−d,k(X).

From Ellenberg, Pierce, and Wood, we know that the number of
fields with our particular conditions not satisfying the torsion

bound is bounded above by O(X
1− 1

2(2k−1) ).

So, we can use O(X
1− 1

2(2k−1) ) as an upper bound for #S−d,k(X).
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Finding an Asymptotic Formula

Then, we combine our asymptotic formula for #Sd,k(X) with
this upper bound on the number of fields that don’t satisfy

NVd,k(D)�ε D
1

2(2k−1)
−ε

to get

#SNVd,k (X) = δd,kX +Od,k(X
1− 1

2(2k−1) )

for explicit positive constant δd,k.

Finally, we consider the ratio of #SNVd,k (X) to #Sd,k(X) and
arrive at our density statement.
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