Zeros of Newform Eisenstein Series on $\Gamma_{0}(N)$

Victoria Jakicic
Indiana University of Pennsylvania
July 18, 2017

Definitions

$S L_{2}(\mathbb{Z})$

$$
S L_{2}(\mathbb{Z})=\left\{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]: a, b, c, d \in \mathbb{Z} ; a d-b c=1\right\} .
$$

Definitions

$S L_{2}(\mathbb{Z})$

$$
S L_{2}(\mathbb{Z})=\left\{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]: a, b, c, d \in \mathbb{Z} ; a d-b c=1\right\} .
$$

$\Gamma_{0}(N)$

A subgroup of $S L_{2}(\mathbb{Z})$ is $\Gamma_{0}(N)$, defined as

$$
\Gamma_{0}(N)=\left\{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in S L_{2}(\mathbb{Z}): c \equiv 0(\bmod N)\right\}
$$

Modular Forms

Definition: Modular Form

A modular form of weight k for $\Gamma=S L_{2}(\mathbb{Z})$ is a function of $f: \mathbb{H} \rightarrow \mathbb{C}$ such that:

Modular Forms

Definition: Modular Form

A modular form of weight k for $\Gamma=S L_{2}(\mathbb{Z})$ is a function of $f: \mathbb{H} \rightarrow \mathbb{C}$ such that:

- For $\gamma=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in \Gamma, f(\gamma(z))=(c z+d)^{k} f(z)$ for all $z \in \mathbb{H}$;

Modular Forms

Definition: Modular Form

A modular form of weight k for $\Gamma=S L_{2}(\mathbb{Z})$ is a function of $f: \mathbb{H} \rightarrow \mathbb{C}$ such that:

- For $\gamma=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in \Gamma, f(\gamma(z))=(c z+d)^{k} f(z)$ for all $z \in \mathbb{H}$;
- f is complex analytic; i.e. f is differentiable in z;

Modular Forms

Definition: Modular Form

A modular form of weight k for $\Gamma=S L_{2}(\mathbb{Z})$ is a function of $f: \mathbb{H} \rightarrow \mathbb{C}$ such that:

- For $\gamma=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in \Gamma, f(\gamma(z))=(c z+d)^{k} f(z)$ for all $z \in \mathbb{H}$;
- f is complex analytic; i.e. f is differentiable in z;
- and $\lim _{z \rightarrow i \infty} f(z)$ exists.

Modular Form: Eisenstein Series

Definition: Eisenstein Series

Consider the weight k Eisenstein series, $E_{k}: \mathbb{H} \rightarrow \mathbb{C}$, defined as

$$
E_{k}(z)=\frac{1}{2} \sum_{(c, d)=1} \frac{1}{(c z+d)^{k}},
$$

where $c, d \in \mathbb{Z}$ and $k \geq 3$.

Modular Form: Eisenstein Series

Definition: Eisenstein Series

Consider the weight k Eisenstein series, $E_{k}: \mathbb{H} \rightarrow \mathbb{C}$, defined as

$$
E_{k}(z)=\frac{1}{2} \sum_{(c, d)=1} \frac{1}{(c z+d)^{k}},
$$

where $c, d \in \mathbb{Z}$ and $k \geq 3$.

- Rankin and Swinnerton-Dyer studied the zeros of $E_{k}(z)$.
- The zeros of $E_{k}(z)$ rest on the the boundary of the fundamental domain, \mathcal{F}, where

$$
\mathcal{F}=\left\{z \in \mathbb{H}:-\frac{1}{2} \leq \operatorname{Re}(z) \leq \frac{1}{2},|z| \geq 1\right\}
$$

Newform Eisenstein Series

Definition: Newform Eisenstein Series

Consider the weight k Newform Eisenstein series, $E_{\chi_{1}, \chi_{2}, k}: \mathbb{H} \rightarrow \mathbb{C}$, on the congruence subgroup $\Gamma_{0}\left(q_{1} q_{2}\right)$ defined as

$$
E_{\chi_{1}, \chi_{2}, k}(z)=\frac{1}{2} \sum_{(c, d)=1} \frac{\chi_{1}(c) \chi_{2}(d)}{\left(c q_{2} z+d\right)^{k}},
$$

where $c, d \in \mathbb{Z}, k \geq 3$, and χ_{1} and χ_{2} are primitive Dirichlet characters with modulus q_{1} and q_{2} respectively.

Newform Eisenstein Series

Definition: Newform Eisenstein Series

Consider the weight k Newform Eisenstein series, $E_{\chi_{1}, \chi_{2}, k}: \mathbb{H} \rightarrow \mathbb{C}$, on the congruence subgroup $\Gamma_{0}\left(q_{1} q_{2}\right)$ defined as

$$
E_{\chi_{1}, \chi_{2}, k}(z)=\frac{1}{2} \sum_{(c, d)=1} \frac{\chi_{1}(c) \chi_{2}(d)}{\left(c q_{2} z+d\right)^{k}},
$$

where $c, d \in \mathbb{Z}, k \geq 3$, and χ_{1} and χ_{2} are primitive Dirichlet characters with modulus q_{1} and q_{2} respectively.

- We wish to find zeros of $E_{\chi_{1}, \chi_{2}, k}(z)$ as weight k is sufficiently large.
- We utilize two different expansions to locate the zeros.

Fourier Expansion

Definition

The Fourier Expansion for $E_{\chi_{1}, \chi_{2}, k}(z)$ is defined as

$$
E_{\chi_{1}, \chi_{2}, k}(z)=e\left(\chi_{1}, \chi_{2}, k\right) \sum_{n=1}^{\infty}\left(\sum_{a b=n} \chi_{1}(a) \overline{\chi_{2}}(b) b^{k-1}\right) e(n z),
$$

where

- $e(n z)=e^{2 \pi i n z}$
- $e\left(\chi_{1}, \chi_{2}, k\right)$ is some constant independent of z.

Fourier Expansion

Simplification

$$
\text { Let } F(z)=\sum_{n=1}^{\infty}\left(\sum_{a b=n} \chi_{1}(a) \overline{\chi_{2}}(b) b^{k-1}\right) e(n z) \text {. }
$$

Fourier Expansion

Simplification

$$
\text { Let } F(z)=\sum_{n=1}^{\infty}\left(\sum_{a b=n} \chi_{1}(a) \overline{\chi_{2}}(b) b^{k-1}\right) e(n z)
$$

Let $f_{j}(z)=\overline{\chi_{2}}(j) j^{k-1} e(j z)$, and to simplify the expansion, take $a=1$ and $b=n$.

Fourier Expansion

Simplification

$$
\text { Let } F(z)=\sum_{n=1}^{\infty}\left(\sum_{a b=n} \chi_{1}(a) \overline{\chi_{2}}(b) b^{k-1}\right) e(n z)
$$

Let $f_{j}(z)=\overline{\chi_{2}}(j) j^{k-1} e(j z)$, and to simplify the expansion, take $a=1$ and $b=n$.

$$
F(z)=\sum_{n=1}^{\infty} f_{n}(z)+\delta(z)
$$

Fourier Expansion

Simplification

$$
\text { Let } F(z)=\sum_{n=1}^{\infty}\left(\sum_{a b=n} \chi_{1}(a) \overline{\chi_{2}}(b) b^{k-1}\right) e(n z)
$$

Let $f_{j}(z)=\overline{\chi_{2}}(j) j^{k-1} e(j z)$, and to simplify the expansion, take $a=1$ and $b=n$.

$$
F(z)=\sum_{n=1}^{\infty} f_{n}(z)+\delta(z)
$$

where

$$
|\delta(z)| \leq \sum_{n=1}^{\infty} n^{k-1} \exp (-2 \pi n y)\left(\sum_{\substack{b \mid n \\ b<n}}\left(\frac{b^{k-1}}{n}\right)\right)
$$

Rouché's Theorem

Rouché's Theorem

Let F and h be two complex-valued functions which are complex analytic on a closed region V with rectangular boundary ∂V. If

$$
|F(z)-h(z)|<|F(z)|+|h(z)|,
$$

for all $z \in \partial V$, then F and h have the same number of zeros, including multiplicity, in V.

Rouché's Theorem

Rouché's Theorem

Let F and h be two complex-valued functions which are complex analytic on a closed region V with rectangular boundary ∂V. If

$$
|F(z)-h(z)|<|F(z)|+|h(z)|
$$

for all $z \in \partial V$, then F and h have the same number of zeros, including multiplicity, in V.

Why Rouché's Theorem?:

- We count the zeros of a good approximation to F, namely h.
- We consequently know the number of zeros of the original function F.

Fourier Expansion

Approximation

Ghosh and Sarnak:

- They looked at Hecke cusp forms for $\operatorname{Im}(z) \gg \sqrt{k}$.

Fourier Expansion

Approximation

Ghosh and Sarnak:

- They looked at Hecke cusp forms for $\operatorname{Im}(z) \gg \sqrt{k}$.
- The functions are best approximated by one term of the Fourier expansion at $n=\ell$ with $y=\frac{k-1}{2 \pi \ell}$.

Fourier Expansion

Approximation

Ghosh and Sarnak:

- They looked at Hecke cusp forms for $\operatorname{Im}(z) \gg \sqrt{k}$.
- The functions are best approximated by one term of the Fourier expansion at $n=\ell$ with $y=\frac{k-1}{2 \pi \ell}$.

For our purposes with Newform Eisenstein Series:

- Fourier expansion is used to approximate $E_{\chi_{1}, \chi_{2}, z}(z)$ when $\operatorname{lm}(z) \gg \sqrt{k}$.

Fourier Expansion

Approximation

Ghosh and Sarnak:

- They looked at Hecke cusp forms for $\operatorname{Im}(z) \gg \sqrt{k}$.
- The functions are best approximated by one term of the Fourier expansion at $n=\ell$ with $y=\frac{k-1}{2 \pi \ell}$.

For our purposes with Newform Eisenstein Series:

- Fourier expansion is used to approximate $E_{\chi_{1}, \chi_{2}, z}(z)$ when $\operatorname{Im}(z) \gg \sqrt{k}$.
- The $n=\ell$ and $n=\ell+1$ terms of the Fourier expansion gives a good approximation for $E_{\chi_{1}, \chi_{2}, k}(z)$ for $y=\operatorname{Im}(z)$ in the range:

$$
\frac{k-1}{2 \pi(\ell+1)}=y_{\ell+1} \leq y \leq y_{\ell}=\frac{k-1}{2 \pi \ell}
$$

Main Term, $h_{\ell}(z)$

Lemma 1
Consider the $n=\ell$ and $n=\ell+1$ terms of the Fourier expansion:

$$
\begin{aligned}
h_{\ell}(z) & =\overline{\chi_{2}}(\ell) \ell^{k-1} e(\ell z)+\overline{\chi_{2}}(\ell+1)(\ell+1)^{k-1} e((\ell+1) z) \\
& =f_{\ell}(z)+f_{\ell+1}(z)
\end{aligned}
$$

Main Term, $h_{\ell}(z)$

Lemma 1
Consider the $n=\ell$ and $n=\ell+1$ terms of the Fourier expansion:

$$
\begin{aligned}
h_{\ell}(z) & =\overline{\chi_{2}}(\ell) \ell^{k-1} e(\ell z)+\overline{\chi_{2}}(\ell+1)(\ell+1)^{k-1} e((\ell+1) z) \\
& =f_{\ell}(z)+f_{\ell+1}(z) .
\end{aligned}
$$

Lemma (1)

The main term $h_{\ell}(z)$ has a unique zero $x_{0}+i y_{0}$ in the region $-\frac{1}{2}<x \leq \frac{1}{2}$ and $y_{\ell+1} \leq y \leq y_{\ell}$, with x_{0} and y_{0} given as

$$
e\left(x_{0}\right)=-\overline{\chi_{2}}(\ell) \chi_{2}(\ell+1)
$$

and

$$
y_{0}=\frac{k-1}{2 \pi}\left|\log \left(1-\frac{1}{\ell+1}\right)\right| .
$$

$F(z)=h_{\ell}(z)+\beta(z)$

With $h_{\ell}(z)$, the function $F(z)$ is now as follows:

$$
F(z)=h_{\ell}(z)+\beta(z)
$$

$F(z)=h_{\ell}(z)+\beta(z)$

With $h_{\ell}(z)$, the function $F(z)$ is now as follows:

$$
F(z)=h_{\ell}(z)+\beta(z) .
$$

We write

$$
\beta(z)=f_{\ell+2}(z)+f_{\ell-1}(z)+\varepsilon_{1}(z)+\varepsilon_{2}(z)+\delta(z)
$$

$F(z)=h_{\ell}(z)+\beta(z)$

With $h_{\ell}(z)$, the function $F(z)$ is now as follows:

$$
F(z)=h_{\ell}(z)+\beta(z) .
$$

We write

$$
\beta(z)=f_{\ell+2}(z)+f_{\ell-1}(z)+\varepsilon_{1}(z)+\varepsilon_{2}(z)+\delta(z)
$$

where

$$
\varepsilon_{1}(z)=\sum_{n=1}^{\ell-2} f_{n}(z) \text { and } \varepsilon_{2}(z)=\sum_{n=\ell+3}^{\infty} f_{n}(z)
$$

$F(z)=h_{\ell}(z)+\beta(z)$

With $h_{\ell}(z)$, the function $F(z)$ is now as follows:

$$
F(z)=h_{\ell}(z)+\beta(z)
$$

We write

$$
\beta(z)=f_{\ell+2}(z)+f_{\ell-1}(z)+\varepsilon_{1}(z)+\varepsilon_{2}(z)+\delta(z)
$$

where

- $\varepsilon_{1}(z)=\sum_{n=1}^{\ell-2} f_{n}(z)$ and $\varepsilon_{2}(z)=\sum_{n=\ell+3}^{\infty} f_{n}(z)$
- $\delta(z)$ as previously defined.

Main Theorem

Define a natural normalization factor of $F(z)$ as

$$
N(y, k)=\frac{(2 \pi y)^{k}}{\Gamma(k)}
$$

and define the region V_{ℓ} as

$$
V_{\ell}=\left\{z \in \mathbb{H}: x_{0}-\frac{1}{2} \leq x \leq x_{0}+\frac{1}{2}, y_{\ell+1} \leq y \leq y_{\ell}\right\}
$$

Main Theorem

Define a natural normalization factor of $F(z)$ as

$$
N(y, k)=\frac{(2 \pi y)^{k}}{\Gamma(k)}
$$

and define the region V_{ℓ} as

$$
V_{\ell}=\left\{z \in \mathbb{H}: x_{0}-\frac{1}{2} \leq x \leq x_{0}+\frac{1}{2}, y_{\ell+1} \leq y \leq y_{\ell}\right\}
$$

Theorem

Let ℓ be a natural number with $\left(\ell, q_{2}\right)=\left(\ell+1, q_{2}\right)=1$ and $\ell \leq \epsilon \sqrt{k}$ for a small $\epsilon>0$. Then, $E_{\chi_{1}, \chi_{2}, k}(z)$ has exactly one zero in V_{ℓ}.

Method for Proof

Rouché's Theorem

Rouché's Theorem

Let F and h be two complex-valued functions which are complex analytic on a closed region V with rectangular boundary ∂V. If

$$
|F(z)-h(z)|<|F(z)|+|h(z)|
$$

for all $z \in \partial V$, then F and h have the same number of zeros, including multiplicity, in V.

Method for Proof

Rouché's Theorem

Rouché's Theorem

Let F and h be two complex-valued functions which are complex analytic on a closed region V with rectangular boundary ∂V. If

$$
|F(z)-h(z)|<|F(z)|+|h(z)|
$$

for all $z \in \partial V$, then F and h have the same number of zeros, including multiplicity, in V.

Then, on ∂V_{ℓ}, it suffices to show:

$$
N(y, k)|\beta(z)|<N(y, k)\left|h_{\ell}(z)\right| .
$$

Then, $F(z)$ will have exactly one zero in V_{ℓ}.

Proof of Theorem

Second Lemma

Lemma (2)

On ∂V_{ℓ},

$$
N(y, k)\left|h_{\ell}(z)\right| \gg \frac{\sqrt{k}}{\ell} .
$$

Proof of Theorem

Second Lemma

Lemma (2)

On ∂V_{ℓ},

$$
N(y, k)\left|h_{\ell}(z)\right| \gg \frac{\sqrt{k}}{\ell}
$$

To prove this lemma, we must break the boundary into three parts:

Proof of Theorem

Second Lemma

Lemma (2)

On ∂V_{ℓ},

$$
N(y, k)\left|h_{\ell}(z)\right| \gg \frac{\sqrt{k}}{\ell} .
$$

To prove this lemma, we must break the boundary into three parts:

- $y=y_{\ell}$, the top boundary;

Proof of Theorem

Second Lemma

Lemma (2)

On ∂V_{ℓ},

$$
N(y, k)\left|h_{\ell}(z)\right| \gg \frac{\sqrt{k}}{\ell}
$$

To prove this lemma, we must break the boundary into three parts:

- $y=y_{\ell}$, the top boundary;
- $y=y_{\ell+1}$, the bottom boundary;

Proof of Theorem

Second Lemma

Lemma (2)

On ∂V_{ℓ},

$$
N(y, k)\left|h_{\ell}(z)\right| \gg \frac{\sqrt{k}}{\ell}
$$

To prove this lemma, we must break the boundary into three parts:

- $y=y_{\ell}$, the top boundary;
- $y=y_{\ell+1}$, the bottom boundary;
- $x=x_{0} \pm \frac{1}{2}$, the left and right boundaries.

Proof of Theorem

Third Lemma

Lemma (3)

For all $z \in V_{\ell}$,

$$
N(y, k)|\beta(z)| \ll \frac{\sqrt{k}}{2^{k} \ell}+\frac{\sqrt{k}}{\ell} \exp \left(-\frac{k}{4 \ell^{2}}\right)
$$

Proof of Theorem

Third Lemma

Lemma (3)

For all $z \in V_{\ell}$,

$$
N(y, k)|\beta(z)| \ll \frac{\sqrt{k}}{2^{k} \ell}+\frac{\sqrt{k}}{\ell} \exp \left(-\frac{k}{4 \ell^{2}}\right) .
$$

To prove this lemma, we must break $\beta(z)$ into three parts:

Proof of Theorem

Third Lemma

Lemma (3)

For all $z \in V_{\ell}$,

$$
N(y, k)|\beta(z)| \ll \frac{\sqrt{k}}{2^{k} \ell}+\frac{\sqrt{k}}{\ell} \exp \left(-\frac{k}{4 \ell^{2}}\right) .
$$

To prove this lemma, we must break $\beta(z)$ into three parts:

- $f_{\ell+2}(z)$ and $f_{\ell-1}(z)$;

Proof of Theorem

Third Lemma

Lemma (3)

For all $z \in V_{\ell}$,

$$
N(y, k)|\beta(z)| \ll \frac{\sqrt{k}}{2^{k} \ell}+\frac{\sqrt{k}}{\ell} \exp \left(-\frac{k}{4 \ell^{2}}\right) .
$$

To prove this lemma, we must break $\beta(z)$ into three parts:

- $f_{\ell+2}(z)$ and $f_{\ell-1}(z)$;
- $\varepsilon_{1}(z)$ and $\varepsilon_{2}(z)$;

Proof of Theorem

Third Lemma

Lemma (3)

For all $z \in V_{\ell}$,

$$
N(y, k)|\beta(z)| \ll \frac{\sqrt{k}}{2^{k} \ell}+\frac{\sqrt{k}}{\ell} \exp \left(-\frac{k}{4 \ell^{2}}\right) .
$$

To prove this lemma, we must break $\beta(z)$ into three parts:

- $f_{\ell+2}(z)$ and $f_{\ell-1}(z)$;
- $\varepsilon_{1}(z)$ and $\varepsilon_{2}(z)$;
- $\delta(z)$.

Proof of Theorem

From Lemma [1], [2], and [3], the theorem

Theorem

The function $E_{\chi_{1}, \chi_{2}, k}(z)$ has exactly one zero for in the region V_{ℓ}.
is proven as

$$
\frac{\sqrt{k}}{2^{k} \ell}+\frac{\sqrt{k}}{\ell} \exp \left(-\frac{k}{4 \ell^{2}}\right)<\frac{\sqrt{k}}{\ell} .
$$

Acknowledgements

I would like to thank:

- Advisor, Dr. Matthew Young
- Collaborator, Thomas Brazelton
- Host, Texas A\&M University
- Funding, National Science Foundation

Thank you.

