ON CLASSIFICATION OF (WEAKLY INTEGRAL) MODULAR CATEGORIES BY DIMENSION

Katie Lee
July 18, 2017
Whittier College

Outline

- Background
- Background
- Current progress
- Background
- Current progress
- Future work

BACKGROUND

The question

We are looking at Categories with Frobenius-Perron dimension $4 q^{2}, 4 p^{2} q$ and 2^{n} where $n=5,6$ and p, q are primes

Why do we care about classification?

Classifying fusion and modular categories has importance in

- physics including quantum computing
- topological quantum field theory
- conformal field theory,
- subfactor theory,
- representation theory of quantum groups and others

Previous Results

Theorem (BRUILLARD,PLAVNIK, et. al.)

There is classification of modular categories of dimensions $p q^{4}$, when $p^{2} q^{2}$ is odd, 2^{3} and 2^{4} [1]

Some Definitions

Definition

A modular category is a non-degenerate pre-modular braided fusion category

What is a fusion category?

A category consists of objects, arrows (morphisms) between the objects and a composition map $(\operatorname{Hom}(y, z) \times \operatorname{Hom}(x, y) \rightarrow \operatorname{Hom}(x, z))$ with

- Associativity
- An identity homomorphism

Definition of fusion categories

Definition

A category \mathscr{C} is a fusion category over complex numbers if

1. \mathscr{C} is abelian \mathbb{C}-linear category (There is a direct sum, zero object and vector spaces)

Definition of fusion categories

Definition

A category \mathscr{C} is a fusion category over complex numbers if

1. \mathscr{C} is abelian \mathbb{C}-linear category (There is a direct sum, zero object and vector spaces)
2. \mathscr{C} is a monoidal category $(\mathscr{C}, \otimes, a, \mathbb{1}, \ell, r)$

Definition of fusion categories

Definition

A category \mathscr{C} is a fusion category over complex numbers if

1. \mathscr{C} is abelian \mathbb{C}-linear category (There is a direct sum, zero object and vector spaces)
2. \mathscr{C} is a monoidal category $(\mathscr{C}, \otimes, a, \mathbb{1}, \ell, r)$
3. \mathscr{C} is rigid (existence of duals)

Definition of fusion categories

Definition

A category \mathscr{C} is a fusion category over complex numbers if

1. \mathscr{C} is abelian \mathbb{C}-linear category (There is a direct sum, zero object and vector spaces)
2. \mathscr{C} is a monoidal category $(\mathscr{C}, \otimes, a, \mathbb{1}, \ell, r)$
3. \mathscr{C} is rigid (existence of duals)
4. \mathscr{C} is semi-simple $\left(x=\oplus m_{i} x_{i}\right.$ where x_{i} simple $)$

Definition of fusion categories

Definition

A category \mathscr{C} is a fusion category over complex numbers if

1. \mathscr{C} is abelian \mathbb{C}-linear category (There is a direct sum, zero object and vector spaces)
2. \mathscr{C} is a monoidal category $(\mathscr{C}, \otimes, a, \mathbb{1}, \ell, r)$
3. \mathscr{C} is rigid (existence of duals)
4. \mathscr{C} is semi-simple $\left(x=\oplus m_{i} x_{i}\right.$ where x_{i} simple $)$
5. \mathscr{C} is "finite"
6. $\mathbb{1}$ is simple

Definition of fusion categories

Definition

An abelian \mathbb{C}-linear category is a category such that

- There exists a zero element

Definition of fusion categories

Definition

An abelian \mathbb{C}-linear category is a category such that

- There exists a zero element
- there are unique homomorphisms mapping $0 \rightarrow X$ and $X \rightarrow 0$

Definition of fusion categories

Definition

An abelian \mathbb{C}-linear category is a category such that

- There exists a zero element
- there are unique homomorphisms mapping $0 \rightarrow X$ and $X \rightarrow 0$
- $\operatorname{Hom}_{C}(y, x)$ is a \mathbb{C}-Vector space

Definition of fusion categories

Definition

An abelian \mathbb{C}-linear category is a category such that

- There exists a zero element
- there are unique homomorphisms mapping $0 \rightarrow X$ and $X \rightarrow 0$
- $\operatorname{Hom}_{C}(y, x)$ is a \mathbb{C}-Vector space
- There exists direct sums

Definition of fusion categories

Definition

A monoidal category is a category with the following $(\mathscr{C}, \otimes, a, \mathbb{1}, \ell, r)$

- $\otimes: \mathscr{C} \times \mathscr{C} \rightarrow \mathscr{C}$

Definition of fusion categories

Definition

A monoidal category is a category with the following $(\mathscr{C}, \otimes, a, \mathbb{1}, \ell, r)$

- $\otimes: \mathscr{C} \times \mathscr{C} \rightarrow \mathscr{C}$
- a: the family of natural isomorphism of associativity regarding tensor product

Definition of fusion categories

Definition

A monoidal category is a category with the following $(\mathscr{C}, \otimes, a, \mathbb{1}, \ell, r)$

- $\otimes: \mathscr{C} \times \mathscr{C} \rightarrow \mathscr{C}$
- a: the family of natural isomorphism of associativity regarding tensor product
- $\mathbb{1}:$: an identity element is in $\operatorname{Obj}(\mathscr{C})$

Definition of fusion categories

Definition

A monoidal category is a category with the following $(\mathscr{C}, \otimes, a, \mathbb{1}, \ell, r)$

- $\otimes: \mathscr{C} \times \mathscr{C} \rightarrow \mathscr{C}$
- a: the family of natural isomorphism of associativity regarding tensor product
- $\mathbb{1}:$: an identity element is in $\operatorname{Obj}(\mathscr{C})$
- And for all x in $\mathscr{C}: \ell$ and r are the family of natural isomorphisms such that
- $\ell_{x}: \mathbb{1} \otimes x \rightrightarrows x$
- $r_{x}: x \otimes \mathbb{1} \widetilde{\rightrightarrows} x$

Definition of fusion categories

Definition

A category is rigid if for every x there is a left and right dual.

Definition

A category is semi-simple when all objects in the category can be written as a direct sum of simple objects.

Definition

One thing that occurs when a category is finite is that there are a finitely many simple objects (up to isomorphisms).

Example of a fusion category

An example of a fusion category is $\operatorname{Rep}(G)$, the category of finite dimensional complex representations of a finite group G. The objects are the representations and the arrows are intertwining maps.

What is Dimension?

There are a finite number of simple objects X_{i} (up to isomorphism). They all have a Frobenius-Perron dimension

$$
F P \operatorname{Dim}(\mathscr{C})=\sum_{k=0}^{r-1}\left(F P \operatorname{Dim}\left(x_{k}\right)^{2}\right)
$$

Some important properties include:

$$
\begin{gathered}
F P \operatorname{Dim}(x \otimes y)=F P \operatorname{Dim}(x) \cdot F P \operatorname{Dim}(y) \\
F P \operatorname{Dim}(x \oplus y)=F P \operatorname{Dim}(x)+F P \operatorname{Dim}(y) \\
F P \operatorname{Dim}(\mathbb{1})=1 \\
\left(F P D i m\left(X_{i}\right)\right)^{2} \mid F P \operatorname{Dim}(\mathscr{C})
\end{gathered}
$$

De-equivariantization

Let \mathscr{B} be the subcategory of \mathscr{C} generated by a self-dual invertible g. If $Z_{2}(\mathscr{B})=\operatorname{Rep}\left(\mathbb{Z}_{2}\right)$ then we can de-equivariantize the category and get a fusion category C_{G} with $\operatorname{FPDim}\left(C_{G}\right)=\operatorname{FPDim}(\mathscr{C}) / 2$
If an object x is stabilized by g, then in C_{G} there are two objects with dimension $\operatorname{FPDim}(x) / 2$
If an object y is mapped to an object w, then in C_{G} there is one object of dimension $\operatorname{FPDim}(y)=\operatorname{FPDim}(w)$

CURRENT PROGRESS

$\operatorname{FPDim}(\mathscr{C})=4 q^{2}$

Let \mathscr{C} be a modular category of Frobenius-Perron dimension $4 q^{2}$
Then $\operatorname{FPDim}\left(x_{i}\right) \in\{1,2, q, 2 q, \sqrt{2}, q \sqrt{2}, \sqrt{q}, 2 \sqrt{q}, \sqrt{2 q}\}$
We are able to find the possible break down of the category based on the number of invertible objects and can eliminate or classify them.

The option in this case are

- 2
- $2 q$
- $2 q^{2}$

$\operatorname{FPDim}(\mathscr{C})=4 q^{2}, \mathrm{a}=2$

In the integral component there are 2 invertible objects and $\frac{q^{2}-1}{2}$ simple object of dimension 2.

For the non-integral component there are four possibilities

- q^{2} simple object of dimension $\sqrt{2}$
- 1 simple object of dimension $q \sqrt{2}$
- j simple objects with dimension $2 \sqrt{q}$ and $2(q-2 j)$ with dimension $\sqrt{q} \quad j$ is a positive integer less than $\frac{q}{2}$
- q simple objects with dimension $\sqrt{2 q}$

$\operatorname{FPDim}(\mathscr{C})=4 q^{2}, \mathrm{a}=2$

In the integral component there are 2 invertible objects and $\frac{q^{2}-1}{2}$ simple object of dimension 2.

For the non-integral component there are four possibilities

- q^{2} simple object of dimension $\sqrt{2}$
- 1 simple object of dimension $q \sqrt{2}$
- j simple objects with dimension $2 \sqrt{q}$ and $2(q-2 j)$ with dimension $\sqrt{q} \quad j$ is a positive integer less than $\frac{q}{2}$
- q simple objects with dimension $\sqrt{2 q}$

$\operatorname{FPDim}(\mathscr{C})=4 q^{2}, a=2$

In the integral component there are 2 invertible objects and $\frac{q^{2}-1}{2}$ simple object of dimension 2.

For the non-integral component there are four possibilities

- q^{2} simple object of dimension $\sqrt{2}$
- 1 simple of object of dimension $q \sqrt{2}$
- j simple objects with dimension $2 \sqrt{q}$ and $2(q-2 j)$ with dimension $\sqrt{q} \quad j$ is a positive integer less than $\frac{q}{2}$
- q simple objects with dimension $\sqrt{2 q}$

$\operatorname{FPDim}(\mathscr{C})=4 q^{2}, a=2$

In the integral component there are 2 invertible objects and $\frac{q^{2}-1}{2}$ simple object of dimension 2.

For the non-integral component there are four possibilities

- q^{2} simple object of dimension $\sqrt{2}$
- 1 simple of object of dimension $q \sqrt{2}$
- j simple objects with dimension $2 \sqrt{q}$ and $2(q-2 j)$ with dimension $\sqrt{q} \quad j$ is a positive integer less than $\frac{q}{2}$
- q simple objects with dimension $\sqrt{2 q}$

In the remaining case C_{G} has q^{2} invertibles and q simple objects dimension \sqrt{q}

$\operatorname{FPDim}(\mathscr{C})=4 q^{2}, \mathrm{a}=2$

How did we get that C_{G} has q^{2} invertibles and q simple objects dimension \sqrt{q}

$\operatorname{FPDim}(\mathscr{C})=4 q^{2}, a=2$

How did we get that C_{G} has q^{2} invertibles and q simple objects dimension \sqrt{q}
Recall that \mathscr{C} has 2 invertible objects, $\frac{q^{2}-1}{2}$ simple object of dimension 2 and j simple objects with dimension $2 \sqrt{q}$ and $2(q-2 j)$ with dimension \sqrt{q}

$\operatorname{FPDim}(\mathscr{C})=4 q^{2}, a=2$

How did we get that C_{G} has q^{2} invertibles and q simple objects dimension \sqrt{q}
Recall that \mathscr{C} has 2 invertible objects, $\frac{q^{2}-1}{2}$ simple object of dimension 2 and j simple objects with dimension $2 \sqrt{q}$ and $2(q-2 j)$ with dimension \sqrt{q}

Consider the object $\mathbb{1}$. Since $\mathbb{1} \otimes g=g$, meaning g does not stabilize it. There is 1 invertible object in C_{G}

$\operatorname{FPDim}(\mathscr{C})=4 q^{2}, a=2$

Let Y_{i} be a simple object of dimension 2. Since $Y_{i} \otimes Y_{i}^{*}=\mathbb{1} \oplus g \oplus Y_{k}$ we know that g must stabilize all the simple objects of dimension 2.

$\operatorname{FPDim}(\mathscr{C})=4 q^{2}, a=2$

Let Y_{i} be a simple object of dimension 2. Since $Y_{i} \otimes Y_{i}^{*}=\mathbb{1} \oplus g \oplus Y_{k}$ we know that g must stabilize all the simple objects of dimension 2 .
The $\frac{q^{2}-1}{2}$ simple objects of dimension 2 in \mathscr{C} become $q^{2}-1$ invertible objects in C_{G}

$\operatorname{FPDim}(\mathscr{C})=4 q^{2}, a=2$

Let Y_{i} be a simple object of dimension 2. Since $Y_{i} \otimes Y_{i}^{*}=\mathbb{1} \oplus g \oplus Y_{k}$ we know that g must stabilize all the simple objects of dimension 2 .
The $\frac{q^{2}-1}{2}$ simple objects of dimension 2 in \mathscr{C} become $q^{2}-1$ invertible objects in C_{G}

Let X_{i} be a simple object of dimension $2 \sqrt{q}$. Again if we look at $X_{i} \otimes X_{i}^{*}=\mathbb{1} \oplus g \oplus Y_{K}^{2 q-1}$.

$\operatorname{FPDim}(\mathscr{C})=4 q^{2}, a=2$

Let Y_{i} be a simple object of dimension 2. Since $Y_{i} \otimes Y_{i}^{*}=\mathbb{1} \oplus g \oplus Y_{k}$ we know that g must stabilize all the simple objects of dimension 2 .
The $\frac{q^{2}-1}{2}$ simple objects of dimension 2 in \mathscr{C} become $q^{2}-1$ invertible objects in C_{G}

Let X_{i} be a simple object of dimension $2 \sqrt{q}$. Again if we look at $X_{i} \otimes X_{i}^{*}=\mathbb{1} \oplus g \oplus Y_{K}^{2 q-1}$.
Since g stabilizes X_{i} the j simple objects in \mathscr{C} becomes $2 j$ simple objects of dimension \sqrt{q} in C_{G}

$\operatorname{FPDim}(\mathscr{C})=4 q^{2}, a=2$

Let Y_{i} be a simple object of dimension 2. Since $Y_{i} \otimes Y_{i}^{*}=\mathbb{1} \oplus g \oplus Y_{k}$ we know that g must stabilize all the simple objects of dimension 2 .
The $\frac{q^{2}-1}{2}$ simple objects of dimension 2 in \mathscr{C} become $q^{2}-1$ invertible objects in C_{G}

Let X_{i} be a simple object of dimension $2 \sqrt{q}$. Again if we look at $X_{i} \otimes X_{i}^{*}=\mathbb{1} \oplus g \oplus Y_{K=1}^{2 q-1}$.
Since g stabilizes X_{i} the j simple objects in \mathscr{C} becomes $2 j$ simple objects of dimension \sqrt{q} in C_{G}

Let Z_{i} be a simple object of dimension \sqrt{q}. Again if we look at $Z_{i} \otimes Z_{i}^{*}=\mathbb{1} \oplus Y_{K}{ }_{K=1}^{q-1}$.

$\operatorname{FPDim}(\mathscr{C})=4 q^{2}, a=2$

Let Y_{i} be a simple object of dimension 2. Since $Y_{i} \otimes Y_{i}^{*}=\mathbb{1} \oplus g \oplus Y_{k}$ we know that g must stabilize all the simple objects of dimension 2 .
The $\frac{q^{2}-1}{2}$ simple objects of dimension 2 in \mathscr{C} become $q^{2}-1$ invertible objects in C_{G}

Let X_{i} be a simple object of dimension $2 \sqrt{q}$. Again if we look at $X_{i} \otimes X_{i}^{*}=\mathbb{1} \oplus g \oplus Y_{K}^{2 q-1}$.

Since g stabilizes X_{i} the j simple objects in \mathscr{C} becomes $2 j$ simple objects of dimension \sqrt{q} in C_{G}

Let Z_{i} be a simple object of dimension \sqrt{q}. Again if we look at $Z_{i} \otimes Z_{i}^{*}=\mathbb{1} \oplus Y_{K=1}^{q-1}$.

Since g does not stabilize Z_{i} the $2(q-2 j)$ simple objects in \mathscr{C} becomes $q-2 j$ simple object of dimension \sqrt{q} is C_{G}

$\operatorname{FPDim}(\mathscr{C})=4 q^{2}, a=2$

Let Y_{i} be a simple object of dimension 2. Since $Y_{i} \otimes Y_{i}^{*}=\mathbb{1} \oplus g \oplus Y_{k}$ we know that g must stabilize all the simple objects of dimension 2 .
The $\frac{q^{2}-1}{2}$ simple objects of dimension 2 in \mathscr{C} become $q^{2}-1$ invertible objects in C_{G}

Let X_{i} be a simple object of dimension $2 \sqrt{q}$. Again if we look at $X_{i} \otimes X_{i}^{*}=\mathbb{1} \oplus g \oplus Y_{K}^{2 q-1}$.
Since g stabilizes X_{i} the j simple objects in \mathscr{C} becomes $2 j$ simple objects of dimension \sqrt{q} in C_{G}

Let Z_{i} be a simple object of dimension \sqrt{q}. Again if we look at $Z_{i} \otimes Z_{i}^{*}=\mathbb{1} \oplus Y_{K=1}^{q-1}$.

Since g does not stabilize Z_{i} the $2(q-2 j)$ simple objects in \mathscr{C} becomes $q-2 j$ simple object of dimension \sqrt{q} is C_{G}

By collecting all the simple objects in C_{G} we get q^{2} invertibles and q simple objects dimension \sqrt{q}

$\operatorname{FPDim}(\mathscr{C})=4 q^{2}, a=2 q$

In the integral component there are q components with 2 invertible objects and $\frac{q-1}{2}$ simple object dimension 2 .

For the non-integral component there are three possibilities

- q components with q simple object of dimension $\sqrt{2}$
- q components with 2 objects with dimension \sqrt{q}
- q components with 1 object of dimension $\sqrt{2 q}$

$\operatorname{FPDim}(\mathscr{C})=4 q^{2}, a=2 q$

In the integral component there are q components with 2 invertible objects and $\frac{q-1}{2}$ simple object dimension 2 .

For the non-integral component there are three possibilities

- q components with q simple object of dimension $\sqrt{2}$
- q components with 2 objects with dimension \sqrt{q}
- q components with 1 object of dimension $\sqrt{2 q}$

In the integral component there are q components with 2 invertible objects and $\frac{q-1}{2}$ simple object dimension 2 .
For the non-integral component there are three possibilities

- q components with q simple object of dimension $\sqrt{2}$
- q components with 2 objects with dimension \sqrt{q}
- q components with 1 object of dimension $\sqrt{2 q}$

In the remaining case C_{G} has q^{2} invertibles and q simple objects of dimension \sqrt{q}

$\operatorname{FPDim}(\mathscr{C})=4 q^{2}, a=2 q^{2}$

In the integral component there are q^{2} components with 2 invertibles
The only choice of non-integral component is q^{2} components with 1 object of dimension $\sqrt{2}$

This is a Generalized Tambara-Yamagami Category, which is well studied.

The Final case

Recall the case where C_{G} has q^{2} invertibles and q simple objects of dimension \sqrt{q}

Since the integral component is modular and pointed we can say that \mathscr{C} is a Gauging of $\left(\mathscr{C}_{\text {int }}\right)_{\mathbb{Z}_{2}}$

$\operatorname{FPDim}(\mathscr{C})=2^{5}$

By similar methods we can find that any category with $\operatorname{FPDim}(\mathscr{C})=2^{5}$ are as follows

$$
\mathscr{C}=B \boxtimes \mathcal{I} \boxtimes \mathcal{I}
$$

$$
\mathscr{C}=\mathcal{I} \boxtimes D
$$

FUTURE WORK

Future work

Look into other dimensions

- $4 p^{2} q$
- $4 p^{2} q^{2}$
- 2^{n}

Acknowledgements

I would like to thank the National Science Foundation for funding this research experience. I would also like to thank Texas A\&M for hosting the research experience and my mentors, Dr. Julia Plavnik, Paul Gustafson and Ola Sobieska for giving guidance during the summer program, as well as my fellow REU participants.

References

P. Bruillard, C. Galindo, S. Hong, Y. Kashina, D. Naidu, S. Natale, J. Plavnik, and E. Rowell. Classification of integral modular categories of frobenius-perron dimension $p q^{4}$ and $p^{2} q^{2}$.
2013.

