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background



The question

We are looking at Categories with Frobenius-Perron dimension 4q2, 4p2q
and 2n where n = 5, 6 and p, q are primes

3



Why do we care about classification?

Classifying fusion and modular categories has importance in

▶ physics including quantum computing
▶ topological quantum field theory
▶ conformal field theory,
▶ subfactor theory,
▶ representation theory of quantum groups and others
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Previous Results

Theorem (BRUILLARD,PLAVNIK, et. al.)

There is classification of modular categories of dimensions pq4, when
p2q2 is odd, 23 and 24 [1]
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Some Definitions

Definition

A modular category is a non-degenerate pre-modular braided fusion
category
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What is a fusion category?

A category consists of objects, arrows (morphisms) between the objects
and a composition map (Hom(y, z)× Hom(x, y) → Hom(x, z)) with

▶ Associativity
▶ An identity homomorphism
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Definition of fusion categories

Definition

A category C is a fusion category over complex numbers if

1. C is abelian C-linear category (There is a direct sum, zero object
and vector spaces)

2. C is a monoidal category (C ,⊗, a,1, ℓ, r)
3. C is rigid (existence of duals)
4. C is semi-simple (x = ⊕mixi where xi simple)
5. C is ”finite”
6. 1 is simple
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Definition of fusion categories

Definition

An abelian C-linear category is a category such that

▶ There exists a zero element

▶ there are unique homomorphisms mapping 0 → X and X → 0
▶ HomC(y, x) is a C-Vector space
▶ There exists direct sums
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Definition of fusion categories

Definition

A monoidal category is a category with the following (C ,⊗, a,1, ℓ, r)

▶ ⊗ : C × C → C

▶ a: the family of natural isomorphism of associativity regarding tensor
product

▶ 1: : an identity element is in Obj(C )
▶ And for all x in C : ℓ and r are the family of natural isomorphisms

such that
▶ ℓx : 1 ⊗ x→̃x
▶ rx : x ⊗ 1→̃x
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Definition of fusion categories

Definition

A category is rigid if for every x there is a left and right dual.

Definition

A category is semi-simple when all objects in the category can be
written as a direct sum of simple objects.

Definition

One thing that occurs when a category is finite is that there are a finitely
many simple objects (up to isomorphisms).
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Example of a fusion category

An example of a fusion category is Rep(G), the category of finite
dimensional complex representations of a finite group G. The objects are
the representations and the arrows are intertwining maps.
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What is Dimension?

There are a finite number of simple objects Xi (up to isomorphism).
They all have a Frobenius-Perron dimension

FPDim(C ) =
r−1∑
k=0

(FPDim(xk)
2)

Some important properties include:

FPDim(x ⊗ y) = FPDim(x) · FPDim(y)

FPDim(x ⊕ y) = FPDim(x) + FPDim(y)

FPDim(1) = 1

(FPDim(Xi))
2|FPDim(C )
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De-equivariantization

Let B be the subcategory of C generated by a self-dual invertible g. If
Z2(B) = Rep(Z2) then we can de-equivariantize the category and get a
fusion category CG with FPDim(CG) = FPDim(C )/2

If an object x is stabilized by g, then in CG there are two objects with
dimension FPDim(x)/2

If an object y is mapped to an object w, then in CG there is one object of
dimension FPDim(y) = FPDim(w)
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current progress



FPDim(C ) = 4q2

Let C be a modular category of Frobenius-Perron dimension 4q2

Then FPDim(xi) ∈ {1, 2, q, 2q,
√

2, q
√

2, √q, 2√q,
√

2q}

We are able to find the possible break down of the category based on the
number of invertible objects and can eliminate or classify them.

The option in this case are

▶ 2
▶ 2q
▶ 2q2
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FPDim(C ) = 4q2, a = 2

In the integral component there are 2 invertible objects and q2−1
2 simple

object of dimension 2.

For the non-integral component there are four possibilities

▶ q2 simple object of dimension
√

2

▶ q2 simple object of dimension
√

2

▶ 1 simple object of dimension q
√

2

▶ 1 simple of object of dimension q
√

2

▶ j simple objects with dimension 2√q and 2(q − 2j) with dimension
√q j is a positive integer less than q

2
▶ q simple objects with dimension

√
2q

▶ q simple objects with dimension
√

2q

In the remaining case CG has q2 invertibles and q simple objects
dimension √q
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FPDim(C ) = 4q2, a = 2

How did we get that CG has q2 invertibles and q simple objects
dimension √q

Recall that C has 2 invertible objects, q2−1
2 simple object of dimension 2

and j simple objects with dimension 2√q and 2(q − 2j) with dimension
√q

Consider the object 1. Since 1 ⊗ g = g, meaning g does not stabilize it.
There is 1 invertible object in CG
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FPDim(C ) = 4q2, a = 2

Let Yi be a simple object of dimension 2. Since Yi ⊗ Y∗
i = 1 ⊕ g ⊕ Yk we

know that g must stabilize all the simple objects of dimension 2.

The q2−1
2 simple objects of dimension 2 in C become q2 − 1 invertible

objects in CG

Let Xi be a simple object of dimension 2√q. Again if we look at
Xi ⊗ X∗

i = 1 ⊕ g ⊕ YK
2q−1
K=1 .

Since g stabilizes Xi the j simple objects in C becomes 2j simple objects
of dimension √q in CG

Let Zi be a simple object of dimension √q. Again if we look at
Zi ⊗ Z∗

i = 1 ⊕ YK
q−1
K=1.

Since g does not stabilize Zi the 2(q − 2j) simple objects in C becomes
q − 2j simple object of dimension √q is CG

By collecting all the simple objects in CG we get q2 invertibles and q
simple objects dimension √q

19



FPDim(C ) = 4q2, a = 2

Let Yi be a simple object of dimension 2. Since Yi ⊗ Y∗
i = 1 ⊕ g ⊕ Yk we

know that g must stabilize all the simple objects of dimension 2.

The q2−1
2 simple objects of dimension 2 in C become q2 − 1 invertible

objects in CG

Let Xi be a simple object of dimension 2√q. Again if we look at
Xi ⊗ X∗

i = 1 ⊕ g ⊕ YK
2q−1
K=1 .

Since g stabilizes Xi the j simple objects in C becomes 2j simple objects
of dimension √q in CG

Let Zi be a simple object of dimension √q. Again if we look at
Zi ⊗ Z∗

i = 1 ⊕ YK
q−1
K=1.

Since g does not stabilize Zi the 2(q − 2j) simple objects in C becomes
q − 2j simple object of dimension √q is CG

By collecting all the simple objects in CG we get q2 invertibles and q
simple objects dimension √q

19



FPDim(C ) = 4q2, a = 2

Let Yi be a simple object of dimension 2. Since Yi ⊗ Y∗
i = 1 ⊕ g ⊕ Yk we

know that g must stabilize all the simple objects of dimension 2.

The q2−1
2 simple objects of dimension 2 in C become q2 − 1 invertible

objects in CG

Let Xi be a simple object of dimension 2√q. Again if we look at
Xi ⊗ X∗

i = 1 ⊕ g ⊕ YK
2q−1
K=1 .

Since g stabilizes Xi the j simple objects in C becomes 2j simple objects
of dimension √q in CG

Let Zi be a simple object of dimension √q. Again if we look at
Zi ⊗ Z∗

i = 1 ⊕ YK
q−1
K=1.

Since g does not stabilize Zi the 2(q − 2j) simple objects in C becomes
q − 2j simple object of dimension √q is CG

By collecting all the simple objects in CG we get q2 invertibles and q
simple objects dimension √q

19



FPDim(C ) = 4q2, a = 2

Let Yi be a simple object of dimension 2. Since Yi ⊗ Y∗
i = 1 ⊕ g ⊕ Yk we

know that g must stabilize all the simple objects of dimension 2.

The q2−1
2 simple objects of dimension 2 in C become q2 − 1 invertible

objects in CG

Let Xi be a simple object of dimension 2√q. Again if we look at
Xi ⊗ X∗

i = 1 ⊕ g ⊕ YK
2q−1
K=1 .

Since g stabilizes Xi the j simple objects in C becomes 2j simple objects
of dimension √q in CG

Let Zi be a simple object of dimension √q. Again if we look at
Zi ⊗ Z∗

i = 1 ⊕ YK
q−1
K=1.

Since g does not stabilize Zi the 2(q − 2j) simple objects in C becomes
q − 2j simple object of dimension √q is CG

By collecting all the simple objects in CG we get q2 invertibles and q
simple objects dimension √q

19



FPDim(C ) = 4q2, a = 2

Let Yi be a simple object of dimension 2. Since Yi ⊗ Y∗
i = 1 ⊕ g ⊕ Yk we

know that g must stabilize all the simple objects of dimension 2.

The q2−1
2 simple objects of dimension 2 in C become q2 − 1 invertible

objects in CG

Let Xi be a simple object of dimension 2√q. Again if we look at
Xi ⊗ X∗

i = 1 ⊕ g ⊕ YK
2q−1
K=1 .

Since g stabilizes Xi the j simple objects in C becomes 2j simple objects
of dimension √q in CG

Let Zi be a simple object of dimension √q. Again if we look at
Zi ⊗ Z∗

i = 1 ⊕ YK
q−1
K=1.

Since g does not stabilize Zi the 2(q − 2j) simple objects in C becomes
q − 2j simple object of dimension √q is CG

By collecting all the simple objects in CG we get q2 invertibles and q
simple objects dimension √q

19



FPDim(C ) = 4q2, a = 2

Let Yi be a simple object of dimension 2. Since Yi ⊗ Y∗
i = 1 ⊕ g ⊕ Yk we

know that g must stabilize all the simple objects of dimension 2.

The q2−1
2 simple objects of dimension 2 in C become q2 − 1 invertible

objects in CG

Let Xi be a simple object of dimension 2√q. Again if we look at
Xi ⊗ X∗

i = 1 ⊕ g ⊕ YK
2q−1
K=1 .

Since g stabilizes Xi the j simple objects in C becomes 2j simple objects
of dimension √q in CG

Let Zi be a simple object of dimension √q. Again if we look at
Zi ⊗ Z∗

i = 1 ⊕ YK
q−1
K=1.

Since g does not stabilize Zi the 2(q − 2j) simple objects in C becomes
q − 2j simple object of dimension √q is CG

By collecting all the simple objects in CG we get q2 invertibles and q
simple objects dimension √q

19



FPDim(C ) = 4q2, a = 2

Let Yi be a simple object of dimension 2. Since Yi ⊗ Y∗
i = 1 ⊕ g ⊕ Yk we

know that g must stabilize all the simple objects of dimension 2.

The q2−1
2 simple objects of dimension 2 in C become q2 − 1 invertible

objects in CG

Let Xi be a simple object of dimension 2√q. Again if we look at
Xi ⊗ X∗

i = 1 ⊕ g ⊕ YK
2q−1
K=1 .

Since g stabilizes Xi the j simple objects in C becomes 2j simple objects
of dimension √q in CG

Let Zi be a simple object of dimension √q. Again if we look at
Zi ⊗ Z∗

i = 1 ⊕ YK
q−1
K=1.

Since g does not stabilize Zi the 2(q − 2j) simple objects in C becomes
q − 2j simple object of dimension √q is CG

By collecting all the simple objects in CG we get q2 invertibles and q
simple objects dimension √q

19



FPDim(C ) = 4q2, a = 2q

In the integral component there are q components with 2 invertible
objects and q−1

2 simple object dimension 2.

For the non-integral component there are three possibilities

▶ q components with q simple object of dimension
√

2

▶ q components with q simple object of dimension
√

2

▶ q components with 2 objects with dimension √q
▶ q components with 1 object of dimension

√
2q

▶ q components with 1 object of dimension
√

2q

In the remaining case CG has q2 invertibles and q simple objects of
dimension √q
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FPDim(C ) = 4q2, a = 2q2

In the integral component there are q2 components with 2 invertibles

The only choice of non-integral component is q2 components with 1
object of dimension

√
2

This is a Generalized Tambara-Yamagami Category, which is well studied.
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The Final case

Recall the case where CG has q2 invertibles and q simple objects of
dimension √q

Since the integral component is modular and pointed we can say that C

is a Gauging of (Cint)Z2
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FPDim(C ) = 25

By similar methods we can find that any category with FPDim(C ) = 25

are as follows

C = B ⊠ I ⊠ I

C = I ⊠ D

23
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Future work

Look into other dimensions

▶ 4p2q
▶ 4p2q2

▶ 2n
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