Molly Hoch

Wellesley College

July 17, 2017

Molly Hoch (Wellesley College)

Max ∩-Complete Codes

July 17, 2017 1 / 24

• The 2014 Nobel Prize in Physiology or Medicine was awarded for the discovery of place cells and grid cells

- The 2014 Nobel Prize in Physiology or Medicine was awarded for the discovery of place cells and grid cells
- Place cells represent an animal's location
- Multiple place cells can fire at once

A **neural code** C on *n* neurons is a set of subsets of [n].

- Given *n* neurons, we build neural codes from their respective *receptive fields*, living in \mathbb{R}^d .
- The receptive field of a neuron i is denoted U_i .

A **neural code** C on *n* neurons is a set of subsets of [n].

- Given *n* neurons, we build neural codes from their respective *receptive fields*, living in \mathbb{R}^d .
- The receptive field of a neuron i is denoted U_i .
- On 5 neurons, one codeword could be {2,4}; this is where the receptive fields U₂ and U₄ overlap; we write this as 24.

• We call a code *convex* if all the receptive fields from which it is built are convex.

- We call a code *convex* if all the receptive fields from which it is built are convex.
- Certain types of codes are known to be convex, notably max intersection-complete codes.

A code ${\mathcal C}$ is intersection-complete if all intersections of its codewords are present in the code.

A code C is **intersection-complete** if all intersections of its codewords are present in the code.

Definition

A code C is **max intersection-complete** if all intersections of its *facets* (codewords maximal up to inclusion) are present in the code.

A code ${\mathcal C}$ is intersection-complete if all intersections of its codewords are present in the code.

Definition

A code C is **max intersection-complete** if all intersections of its *facets* (codewords maximal up to inclusion) are present in the code.

Definition

The maximal code on *n* neurons is $C_{max}(n) = \{\sigma : \sigma \subseteq [n]\}.$

イロト イポト イヨト イヨト 二日

July 17, 2017 7 / 24

13		
123	12	124
		14

 $\mathcal{C} = \{123, 124, 12, 13, 14, \emptyset\}$

イロト イヨト イヨト

13		
123	12	124
		14

$$\label{eq:constraint} \begin{split} \mathcal{C} &= \{123, 124, 12, 13, 14, \emptyset\} \\ \text{Intersection-complete} \end{split}$$

13		
123	12	124
		14

$$\label{eq:constraint} \begin{split} \mathcal{C} &= \{123, 124, 12, 13, 14, \emptyset\} \\ \text{Intersection-complete? No!} \end{split}$$

Image: Image:

→ < ∃ →</p>

13		
123	12	124
		14

 $\mathcal{C} = \{123, 124, 12, 13, 14, \emptyset\}$ Intersection-complete? No! Max intersection-complete?

13		
123	12	124
		14

 $\mathcal{C} = \{123, 124, 12, 13, 14, \emptyset\}$ Intersection-complete? No! Max intersection-complete? Yes!

From a neural code \mathcal{C} , we obtain its neural ideal $J_{\mathcal{C}}$, defined to be

$$J_{\mathcal{C}} := \langle \prod_{i \in \sigma} x_i \prod_{j \in \tau} (1 - x_j) : \sigma \notin \mathcal{C}, \tau = [n] - \sigma \rangle.$$

Image: Image:

From a neural code \mathcal{C} , we obtain its neural ideal $J_{\mathcal{C}}$, defined to be

$$J_{\mathcal{C}} := \langle \prod_{i \in \sigma} x_i \prod_{j \in \tau} (1 - x_j) : \sigma \notin \mathcal{C}, \tau = [n] - \sigma \rangle.$$

In our example, 24 is not a codeword of C, so

$$x_2x_4(1+x_1)(1+x_3) \in J_C$$

Molly Hoch (Wellesley College)

The **canonical form** $CF(J_C)$ of a neural ideal consists of the minimal pseudomonomials with respect to divisibility present in the neural ideal.

The **canonical form** $CF(J_C)$ of a neural ideal consists of the minimal pseudomonomials with respect to divisibility present in the neural ideal.

The canonical form has three types of elements, but we focus on only two:

- Type 1 relations: $\prod_i x_i$
- Type 2 relations: $\prod_i x_i \prod_j (1 x_j)$

The **canonical form** $CF(J_C)$ of a neural ideal consists of the minimal pseudomonomials with respect to divisibility present in the neural ideal.

The canonical form has three types of elements, but we focus on only two:

- Type 1 relations: $\prod_i x_i$
- Type 2 relations: $\prod_i x_i \prod_j (1 x_j)$
- If a Type 1 relation $x_{a_1} \dots x_{a_n}$ is in the CF of J_C , then the codeword $c = a_1 \dots a_n$ is not in C, nor is any codeword containing c.
- If a Type 2 relation $x_{a_1} \dots x_{a_n} (1-x_{b_1}) \dots (1-x_{b_m})$ is in the CF, then

$$\bigcap_{i \in \{a_1, ..., a_n\}} U_i \subseteq \bigcup_{j \in \{b_1, ..., b_m\}} U_j$$

Recall our code $C = \{123, 124, 12, 14, 13, \emptyset\}.$

Here, $CF(J_C) = \{x_2(1-x_1), x_3(1-x_1), x_4(1-x_1), x_3x_4, x_1(1-x_2)(1-x_3)(1-x_4)\}.$

Recall our code $C = \{123, 124, 12, 14, 13, \emptyset\}.$

Here, $CF(J_C) = \{x_2(1-x_1), x_3(1-x_1), x_4(1-x_1), x_3x_4, x_1(1-x_2)(1-x_3)(1-x_4)\}.$

Because $x_3x_4 \in CF(J_C)$, we can't have $34 \in C$, nor can we have 134, 234, or $1234 \in C$.

Recall our code $C = \{123, 124, 12, 14, 13, \emptyset\}.$

Here, $CF(J_C) = \{x_2(1-x_1), x_3(1-x_1), x_4(1-x_1), x_3x_4, x_1(1-x_2)(1-x_3)(1-x_4)\}.$

Because $x_3x_4 \in CF(J_C)$, we can't have $34 \in C$, nor can we have 134, 234, or $1234 \in C$.

Further, an element like $x_2(1 - x_1)$ tells us that $U_2 \subseteq U_1$.

Similarly, because $x_1(1-x_2)(1-x_3)(1-x_4) \in CF(J_C)$, we have that $U_1 \subset U_2 \cup U_3 \cup U_4.$

-∢ ∃ ▶

Similarly, because $x_1(1-x_2)(1-x_3)(1-x_4) \in CF(J_C)$, we have that $U_1 \subseteq U_2 \cup U_3 \cup U_4$.

The following theorem gives a signature in the canonical form for intersection-complete codes:

Theorem (Curto, Gross, et al. 2015)

A code C is intersection-complete if and only if $CF(J_C)$ contains only monomials and pseudomonomials of the form $(1 - x_j) \prod_i x_i$.

Research Question

Does there exist a signature in the canonical form for maximum intersection-complete codes?

- We have been able to develop an algorithm for finding the facets of a code C from $CF(J_C)$.
- We use the fact that if a monomial appears in $CF(J_C)$ then no codeword containing the indices of that monomial appears in C.

Recall our earlier example: $C = \{123, 124, 12, 13, 14, \emptyset\}.$

The only monomial in $CF(J_C)$ is x_3x_4 .

On 4 neurons, $C_{max} = \{\emptyset, 1, 2, 3, 4, 12, 13, 14, 23, 24, 34, 123, 124, 134, 234, 1234\}.$ Recall our earlier example: $C = \{123, 124, 12, 13, 14, \emptyset\}.$

The only monomial in $CF(J_C)$ is x_3x_4 .

Removing all codewords eliminated by this monomial gives us $\mathcal{C}'_{max} = \{ \emptyset, 1, 2, 3, 4, 12, 13, 14, 23, 24, \frac{34}{4}, 123, 124, \frac{134}{134}, \frac{234}{1234} \}.$

Recall our earlier example: $C = \{123, 124, 12, 13, 14, \emptyset\}$. The only monomial in $CF(J_C)$ is x_3x_4 .

This leaves us with $C'_{max} = \{\emptyset, 1, 2, 3, 4, 12, 13, 14, 23, 24, 123, 124\}.$

Recall our earlier example: $C = \{123, 124, 12, 13, 14, \emptyset\}$.

The only monomial in $CF(J_C)$ is x_3x_4 .

This leaves us with $C'_{max} = \{\emptyset, 1, 2, 3, 4, 12, 13, 14, 23, 24, 123, 124\}.$

We see that the facets of C and our reduced C'_{max} are the same.

Proposition (Franke-H)

Let C be a neural code, J_C be its neural ideal, and $CF(J_C)$ be the corresponding canonical form. If there exist $\tau \subset [n]$ and $\sigma \subseteq [n] - \tau$ such that $\prod_{i \in \tau} x_i \in CF(J_C)$ and $\prod_{j \in \sigma} x_j \prod_{i \in \tau} (1 - x_i) \in CF(J_C)$, then C is not convex.

Corollary

For a code to be max intersection-complete, it cannot have the above condition.

Let $C = \{4, 5, 1234, 1235, \emptyset\}$ be a code on five neurons. The canonical form contains both x_4x_5 and $x_1(1 - x_4)(1 - x_5)$. This tells us that $U_4 \cap U_5 = \emptyset$ Let $C = \{4, 5, 1234, 1235, \emptyset\}$ be a code on five neurons. The canonical form contains both x_4x_5 and $x_1(1 - x_4)(1 - x_5)$. This tells us that $U_4 \cap U_5 = \emptyset$

Let $C = \{4, 5, 1234, 1235, \emptyset\}$ be a code on five neurons. The canonical form contains both x_4x_5 and $x_1(1 - x_4)(1 - x_5)$. This tells us that $U_4 \cap U_5 = \emptyset$, and that $U_1 \subseteq U_4 \cup U_5$. Let $C = \{4, 5, 1234, 1235, \emptyset\}$ be a code on five neurons. The canonical form contains both x_4x_5 and $x_1(1-x_4)(1-x_5)$. This tells us that $U_4 \cap U_5 = \emptyset$, and that $U_1 \subseteq U_4 \cup U_5$.

1. Pick a complex pseudomonomial This is a pseudomonomial with multiple $(1 - x_j)$ factors, e.g., $x_i(1 - x_{j_1}) \dots (1 - x_{j_m})$. Write $\bigcap_{k \in [m]} ij_k = i$.

- 1. Pick a complex pseudomonomial This is a pseudomonomial with multiple $(1 x_j)$ factors, e.g., $x_i(1 x_{j_1}) \dots (1 x_{j_m})$. Write $\bigcap_{k \in [m]} ij_k = i$.
- 2. Add "equivalent" neurons Neurons which always fire together are equivalent, e.g. if $x_i(1 - x_j)$ and $x_j(1 - x_i) \in CF(J_C)$, then neurons *i* and *j* are equivalent.

- 1. Pick a complex pseudomonomial This is a pseudomonomial with multiple $(1 x_j)$ factors, e.g., $x_i(1 x_{j_1}) \dots (1 x_{j_m})$. Write $\bigcap_{k \in [m]} ij_k = i$.
- 2. Add "equivalent" neurons Neurons which always fire together are equivalent, e.g. if $x_i(1 - x_j)$ and $x_j(1 - x_i) \in CF(J_C)$, then neurons *i* and *j* are equivalent.
- 3. Add all other possible neurons not prevented by monomials.

Image: A mathematical states and a mathem

1. Pick $x_2(1-x_4)(1-x_6) \in CF(J_C)$. This gives us $U_2 \subseteq U_4 \cup U_6$. Potentially, we have $24 \cap 26 = 2$.

1. Pick $x_2(1-x_4)(1-x_6) \in CF(J_C)$. This gives us $U_2 \subseteq U_4 \cup U_6$. Potentially, we have $24 \cap 26 = 2$.

2.
$$x_4(1-x_5), x_5(1-x_4), x_2(1-x_3), x_3(1-x_2) \in \mathit{CF}(J_\mathcal{C})$$
, so

 $U_4 = U_5$ and $U_2 = U_3$ Potentially, we then have $2345 \cap 236$

1. Pick $x_2(1-x_4)(1-x_6) \in CF(J_C)$. This gives us $U_2 \subseteq U_4 \cup U_6$. Potentially, we have $24 \cap 26 = 2$.

2.
$$x_4(1-x_5), x_5(1-x_4), x_2(1-x_3), x_3(1-x_2) \in \mathit{CF}(J_\mathcal{C})$$
, so

 $U_4 = U_5$ and $U_2 = U_3$ Potentially, we then have $2345 \cap 236$

3. x_4x_6, x_5x_6 are the only monomials in $CF(J_C)$, so we can add 1 to 2345 and 236 to get $1236 \cap 12345 = 123$

Thank you to:

- Dr. Anne Shiu
- Megan Franke
- Nida Obatake
- Texas A&M University Department of Mathematics
- National Science Foundation