Max Intersection-Complete Codes

Molly Hoch
Wellesley College
July 17, 2017

Motivation

- The 2014 Nobel Prize in Physiology or Medicine was awarded for the discovery of place cells and grid cells

Motivation

- The 2014 Nobel Prize in Physiology or Medicine was awarded for the discovery of place cells and grid cells
- Place cells represent an animal's location
- Multiple place cells can fire at once

Notation

Definition

A neural code \mathcal{C} on n neurons is a set of subsets of $[n]$.

- Given n neurons, we build neural codes from their respective receptive fields, living in \mathbb{R}^{d}.
- The receptive field of a neuron i is denoted U_{i}.

Notation

Definition

A neural code \mathcal{C} on n neurons is a set of subsets of $[n]$.

- Given n neurons, we build neural codes from their respective receptive fields, living in \mathbb{R}^{d}.
- The receptive field of a neuron i is denoted U_{i}.
- On 5 neurons, one codeword could be $\{2,4\}$; this is where the receptive fields U_{2} and U_{4} overlap; we write this as 24 .

Neural Codes and Convexity

- We call a code convex if all the receptive fields from which it is built are convex.

Neural Codes and Convexity

- We call a code convex if all the receptive fields from which it is built are convex.
- Certain types of codes are known to be convex, notably max intersection-complete codes.

Types of Codes

Definition

A code \mathcal{C} is intersection-complete if all intersections of its codewords are present in the code.

Types of Codes

Definition

A code \mathcal{C} is intersection-complete if all intersections of its codewords are present in the code.

Definition

A code \mathcal{C} is max intersection-complete if all intersections of its facets (codewords maximal up to inclusion) are present in the code.

Types of Codes

Definition

A code \mathcal{C} is intersection-complete if all intersections of its codewords are present in the code.

Definition

A code \mathcal{C} is max intersection-complete if all intersections of its facets (codewords maximal up to inclusion) are present in the code.

Definition

The maximal code on n neurons is $\mathcal{C}_{\max }(n)=\{\sigma: \sigma \subseteq[n]\}$.

Max Intersection-Complete Codes

Max Intersection-Complete Codes

Max Intersection-Complete Codes

Max Intersection-Complete Codes

Max Intersection-Complete Codes

13		
123	12	124

$$
\mathcal{C}=\{123,124,12,13,14, \emptyset\}
$$

$$
\mathcal{C}=\{123,124,12,13,14, \emptyset\}
$$

Intersection-complete?

$$
\begin{aligned}
& \mathcal{C}=\{123,124,12,13,14, \emptyset\} \\
& \text { Intersection-complete? No! }
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{C}=\{123,124,12,13,14, \emptyset\} \\
& \text { Intersection-complete? No! } \\
& \text { Max intersection-complete? }
\end{aligned}
$$

$$
\begin{gathered}
\mathcal{C}=\{123,124,12,13,14, \emptyset\} \\
\text { Intersection-complete? No! } \\
\text { Max intersection-complete? Yes! }
\end{gathered}
$$

Neural Ideals

From a neural code \mathcal{C}, we obtain its neural ideal $J_{\mathcal{C}}$, defined to be

$$
J_{\mathcal{C}}:=\left\langle\prod_{i \in \sigma} x_{i} \prod_{j \in \tau}\left(1-x_{j}\right): \sigma \notin \mathcal{C}, \tau=[n]-\sigma\right\rangle .
$$

Neural Ideals

From a neural code \mathcal{C}, we obtain its neural ideal $J_{\mathcal{C}}$, defined to be

$$
J_{\mathcal{C}}:=\left\langle\prod_{i \in \sigma} x_{i} \prod_{j \in \tau}\left(1-x_{j}\right): \sigma \notin \mathcal{C}, \tau=[n]-\sigma\right\rangle
$$

In our example, 24 is not a codeword of \mathcal{C}, so

$$
x_{2} x_{4}\left(1+x_{1}\right)\left(1+x_{3}\right) \in J_{\mathcal{C}}
$$

The Canonical Form

The canonical form $C F\left(J_{\mathcal{C}}\right)$ of a neural ideal consists of the minimal pseudomonomials with respect to divisibility present in the neural ideal.

The Canonical Form

The canonical form $C F\left(J_{\mathcal{C}}\right)$ of a neural ideal consists of the minimal pseudomonomials with respect to divisibility present in the neural ideal.

The canonical form has three types of elements, but we focus on only two:

- Type 1 relations: $\prod_{i} x_{i}$
- Type 2 relations: $\prod_{i} x_{i} \prod_{j}\left(1-x_{j}\right)$

The Canonical Form

The canonical form $C F\left(J_{\mathcal{C}}\right)$ of a neural ideal consists of the minimal pseudomonomials with respect to divisibility present in the neural ideal.

The canonical form has three types of elements, but we focus on only two:

- Type 1 relations: $\prod_{i} x_{i}$
- Type 2 relations: $\prod_{i} x_{i} \prod_{j}\left(1-x_{j}\right)$
- If a Type 1 relation $x_{a_{1}} \ldots x_{a_{n}}$ is in the CF of $J_{\mathcal{C}}$, then the codeword $c=a_{1} \ldots a_{n}$ is not in \mathcal{C}, nor is any codeword containing c.
- If a Type 2 relation $x_{a_{1}} \ldots x_{a_{n}}\left(1-x_{b_{1}}\right) \ldots\left(1-x_{b_{m}}\right)$ is in the CF, then

$$
\bigcap_{i \in\left\{a_{1}, \ldots, a_{n}\right\}} U_{i} \subseteq \bigcup_{j \in\left\{b_{1}, \ldots, b_{m}\right\}} U_{j}
$$

Canonical Form Example

Recall our code $\mathcal{C}=\{123,124,12,14,13, \emptyset\}$.
Here,
$\operatorname{CF}\left(J_{\mathcal{C}}\right)=\left\{x_{2}\left(1-x_{1}\right), x_{3}\left(1-x_{1}\right), x_{4}\left(1-x_{1}\right), x_{3} x_{4}, x_{1}\left(1-x_{2}\right)\left(1-x_{3}\right)\left(1-x_{4}\right)\right\}$.

Canonical Form Example

Recall our code $\mathcal{C}=\{123,124,12,14,13, \emptyset\}$.
Here,
$\operatorname{CF}\left(J_{\mathcal{C}}\right)=\left\{x_{2}\left(1-x_{1}\right), x_{3}\left(1-x_{1}\right), x_{4}\left(1-x_{1}\right), x_{3} x_{4}, x_{1}\left(1-x_{2}\right)\left(1-x_{3}\right)\left(1-x_{4}\right)\right\}$.
Because $x_{3} x_{4} \in C F\left(J_{\mathcal{C}}\right)$, we can't have $34 \in \mathcal{C}$, nor can we have 134,234 , or $1234 \in \mathcal{C}$.

Canonical Form Example

Recall our code $\mathcal{C}=\{123,124,12,14,13, \emptyset\}$.
Here,
$\operatorname{CF}\left(J_{\mathcal{C}}\right)=\left\{x_{2}\left(1-x_{1}\right), x_{3}\left(1-x_{1}\right), x_{4}\left(1-x_{1}\right), x_{3} x_{4}, x_{1}\left(1-x_{2}\right)\left(1-x_{3}\right)\left(1-x_{4}\right)\right\}$.
Because $x_{3} x_{4} \in C F\left(J_{\mathcal{C}}\right)$, we can't have $34 \in \mathcal{C}$, nor can we have 134,234 , or $1234 \in \mathcal{C}$.

Further, an element like $x_{2}\left(1-x_{1}\right)$ tells us that $U_{2} \subseteq U_{1}$.

Canonical Form Example

Similarly, because $x_{1}\left(1-x_{2}\right)\left(1-x_{3}\right)\left(1-x_{4}\right) \in C F\left(J_{\mathcal{C}}\right)$, we have that $U_{1} \subseteq U_{2} \cup U_{3} \cup U_{4}$.

Canonical Form Example

Similarly, because $x_{1}\left(1-x_{2}\right)\left(1-x_{3}\right)\left(1-x_{4}\right) \in C F\left(J_{\mathcal{C}}\right)$, we have that $U_{1} \subseteq U_{2} \cup U_{3} \cup U_{4}$.

An Existing Signature for Intersection-Complete Codes

The following theorem gives a signature in the canonical form for intersection-complete codes:

Theorem (Curto, Gross, et al. 2015)
A code \mathcal{C} is intersection-complete if and only if $C F\left(J_{\mathcal{C}}\right)$ contains only monomials and pseudomonomials of the form $\left(1-x_{j}\right) \prod_{i} x_{i}$.

Question

Research Question

Does there exist a signature in the canonical form for maximum intersection-complete codes?

Finding the Facets

We have been able to develop an algorithm for finding the facets of a code \mathcal{C} from $C F\left(J_{\mathcal{C}}\right)$.

We use the fact that if a monomial appears in $\operatorname{CF}\left(J_{\mathcal{C}}\right)$ then no codeword containing the indices of that monomial appears in \mathcal{C}.

Example of Facet Algorithm

Recall our earlier example: $\mathcal{C}=\{\mathbf{1 2 3}, \mathbf{1 2 4}, 12,13,14, \emptyset\}$.
The only monomial in $C F\left(J_{\mathcal{C}}\right)$ is $x_{3} x_{4}$.
On 4 neurons, $\mathcal{C}_{\text {max }}=\{\emptyset, 1,2,3,4,12,13,14,23,24,34,123,124,134,234,1234\}$.

Example of Facet Algorithm

Recall our earlier example: $\mathcal{C}=\{\mathbf{1 2 3}, \mathbf{1 2 4}, 12,13,14, \emptyset\}$.
The only monomial in $C F\left(J_{\mathcal{C}}\right)$ is $x_{3} x_{4}$.
Removing all codewords eliminated by this monomial gives us $\mathcal{C}_{\text {max }}^{\prime}=\{\emptyset, 1,2,3,4,12,13,14,23,24,34,123,124,134,234,1234\}$.

Example of Facet Algorithm

Recall our earlier example: $\mathcal{C}=\{\mathbf{1 2 3}, \mathbf{1 2 4}, 12,13,14, \emptyset\}$.
The only monomial in $\operatorname{CF}\left(J_{\mathcal{C}}\right)$ is $x_{3} x_{4}$.
This leaves us with $\mathcal{C}_{\text {max }}^{\prime}=\{\emptyset, 1,2,3,4,12,13,14,23,24,123,124\}$.

Example of Facet Algorithm

Recall our earlier example: $\mathcal{C}=\{\mathbf{1 2 3}, \mathbf{1 2 4}, 12,13,14, \emptyset\}$.
The only monomial in $C F\left(J_{\mathcal{C}}\right)$ is $x_{3} x_{4}$.
This leaves us with
$\mathcal{C}_{\text {max }}^{\prime}=\{\emptyset, 1,2,3,4,12,13,14,23,24,123,124\}$.
We see that the facets of \mathcal{C} and our reduced $\mathcal{C}_{\text {max }}^{\prime}$ are the same.

Sufficient Condition for Non-maximality

Proposition (Franke-H)

Let \mathcal{C} be a neural code, $J_{\mathcal{C}}$ be its neural ideal, and $\operatorname{CF}\left(J_{\mathcal{C}}\right)$ be the corresponding canonical form. If there exist $\tau \subset[n]$ and $\sigma \subseteq[n]-\tau$ such that $\prod_{i \in \tau} x_{i} \in C F\left(J_{\mathcal{C}}\right)$ and $\prod_{j \in \sigma} x_{j} \prod_{i \in \tau}\left(1-x_{i}\right) \in C F\left(J_{\mathcal{C}}\right)$, then \mathcal{C} is not convex.

Corollary

For a code to be max intersection-complete, it cannot have the above condition.

Example

Let $\mathcal{C}=\{4,5,1234,1235, \emptyset\}$ be a code on five neurons. The canonical form contains both $x_{4} x_{5}$ and $x_{1}\left(1-x_{4}\right)\left(1-x_{5}\right)$.
This tells us that $U_{4} \cap U_{5}=\emptyset$

Example

Let $\mathcal{C}=\{4,5,1234,1235, \emptyset\}$ be a code on five neurons. The canonical form contains both $x_{4} x_{5}$ and $x_{1}\left(1-x_{4}\right)\left(1-x_{5}\right)$. This tells us that $U_{4} \cap U_{5}=\emptyset$

Example

Let $\mathcal{C}=\{4,5,1234,1235, \emptyset\}$ be a code on five neurons. The canonical form contains both $x_{4} x_{5}$ and $x_{1}\left(1-x_{4}\right)\left(1-x_{5}\right)$. This tells us that $U_{4} \cap U_{5}=\emptyset$, and that $U_{1} \subseteq U_{4} \cup U_{5}$.

Example

Let $\mathcal{C}=\{4,5,1234,1235, \emptyset\}$ be a code on five neurons. The canonical form contains both $x_{4} x_{5}$ and $x_{1}\left(1-x_{4}\right)\left(1-x_{5}\right)$. This tells us that $U_{4} \cap U_{5}=\emptyset$, and that $U_{1} \subseteq U_{4} \cup U_{5}$.

An Algorithm for Determining Missing Codewords

1. Pick a complex pseudomonomial

This is a pseudomonomial with multiple $\left(1-x_{j}\right)$ factors, e.g., $x_{i}\left(1-x_{j_{1}}\right) \ldots\left(1-x_{j_{m}}\right)$. Write $\cap_{k \in[m]} i j_{k}=i$.

An Algorithm for Determining Missing Codewords

1. Pick a complex pseudomonomial

This is a pseudomonomial with multiple $\left(1-x_{j}\right)$ factors, e.g.,
$x_{i}\left(1-x_{j_{1}}\right) \ldots\left(1-x_{j_{m}}\right)$. Write $\cap_{k \in[m]} i_{k}=i$.
2. Add "equivalent" neurons

Neurons which always fire together are equivalent, e.g. if $x_{i}\left(1-x_{j}\right)$ and $x_{j}\left(1-x_{i}\right) \in C F\left(J_{\mathcal{C}}\right)$, then neurons i and j are equivalent.

An Algorithm for Determining Missing Codewords

1. Pick a complex pseudomonomial

This is a pseudomonomial with multiple $\left(1-x_{j}\right)$ factors, e.g.,
$x_{i}\left(1-x_{j_{1}}\right) \ldots\left(1-x_{j_{m}}\right)$. Write $\cap_{k \in[m]} i_{k}=i$.
2. Add "equivalent" neurons

Neurons which always fire together are equivalent, e.g. if $x_{i}\left(1-x_{j}\right)$ and $x_{j}\left(1-x_{i}\right) \in C F\left(J_{\mathcal{C}}\right)$, then neurons i and j are equivalent.
3. Add all other possible neurons not prevented by monomials.

Example

Let $\mathcal{C}=\{12345,1236,2345, \emptyset\}$

Example

Let $\mathcal{C}=\{12345,1236,2345, \emptyset\}$

1. Pick $x_{2}\left(1-x_{4}\right)\left(1-x_{6}\right) \in C F\left(J_{\mathcal{C}}\right)$. This gives us $U_{2} \subseteq U_{4} \cup U_{6}$. Potentially, we have $24 \cap 26=2$.

Example

Let $\mathcal{C}=\{12345,1236,2345, \emptyset\}$

1. Pick $x_{2}\left(1-x_{4}\right)\left(1-x_{6}\right) \in C F\left(J_{\mathcal{C}}\right)$. This gives us $U_{2} \subseteq U_{4} \cup U_{6}$. Potentially, we have $24 \cap 26=2$.
2. $x_{4}\left(1-x_{5}\right), x_{5}\left(1-x_{4}\right), x_{2}\left(1-x_{3}\right), x_{3}\left(1-x_{2}\right) \in C F\left(J_{\mathcal{C}}\right)$, so
$U_{4}=U_{5}$ and $U_{2}=U_{3}$
Potentially, we then have $2345 \cap 236$

Example

Let $\mathcal{C}=\{12345,1236,2345, \emptyset\}$

1. Pick $x_{2}\left(1-x_{4}\right)\left(1-x_{6}\right) \in C F\left(J_{\mathcal{C}}\right)$. This gives us $U_{2} \subseteq U_{4} \cup U_{6}$. Potentially, we have $24 \cap 26=2$.
2. $x_{4}\left(1-x_{5}\right), x_{5}\left(1-x_{4}\right), x_{2}\left(1-x_{3}\right), x_{3}\left(1-x_{2}\right) \in C F\left(J_{\mathcal{C}}\right)$, so
$U_{4}=U_{5}$ and $U_{2}=U_{3}$
Potentially, we then have $2345 \cap 236$
3. $x_{4} x_{6}, x_{5} x_{6}$ are the only monomials in $C F\left(J_{\mathcal{C}}\right)$, so we can add 1 to 2345 and 236 to get $1236 \cap 12345=123$

Acknowledgments

Thank you to:

- Dr. Anne Shiu
- Megan Franke
- Nida Obatake
- Texas A\&M University Department of Mathematics
- National Science Foundation

