
Oscillations in Michaelis-Menten Systems

Hwai-Ray Tung

July 20, 2017

Abstract

Oscillations play a major role in a number of biological systems, the most notable example in bio-
chemistry being circadian clocks. In this paper we focus on the existence of oscillations within a 2-site
phosphorylation system. Previously, Wang and Sontag showed, using monotone systems theory, that the
Michaelis-Menten (MM) approximation of the distributive and sequential 2-site phosphorylation system
lacks oscillations. However, biological systems are generally not purely distributive; there is generally
some processive behavior as well. Accordingly, this paper focuses on the MM approximation of a general
sequential 2-site phosphorylation system with both processive and distributive behavior and expands on
the methods of Bozeman and Morales to find conditions for the existence of oscillations. By studying
the MM approximation, light may be shed on the existence of oscillations in the original system.

Introduction

Oscillations appear in a number of biological systems, including predator-prey models, the lighting up of
fireflies [6], auditory hair bundles, and cytoskeletal structures. Within the context of biochemistry, much
of the study of oscillations centers around genetic oscillations, which have been shown to play a role in
circadian clocks, the segmentation of vertebrates, and the activity of the tumor suppressor gene p53 [4].
A simple example of genetic oscillation can be seen in Figure 1.

Figure 1: An example of genetic oscillation. The gene creates mRNA which creates
a transcription factor. This transcription factor binds to the promoter of the gene,
reducing the production of mRNA. The transcription factor is also being broken down
by the cell. This leads to oscillations in the concentration of the transcription factor.
Diagram taken from [4].

This paper will focus on 2-site phosphorylation systems arising from the network in (1). Phosphoryla-
tion systems can modify, activate, or deactivate proteins and have been observed in membrane receptors,
protein kinases, transcription factors, cell cycle regulators, and circadian clock proteins, to name a few.
The number of sites refer to the number of phosphate groups which can attach to the compound. In
allowing multiple phosphate groups to attach, a compound can exhibit multiple types of behavior [5].

1

S0 + E
k1−⇀↽−
k2

S0E
k3−→ S1 + E

k4−⇀↽−
k5

S1E
k6−→ S2 + E

S2 + F
l1−⇀↽−
l2

S2F
l3−→ S1 + F

l4−⇀↽−
l5

S1F
l6−→ S0 + F

S0E
k7−→ S1E

S2F
l7−→ S1F

(1)

Most of the previous work on 2-site phosphorylation systems have focused on systems with a sequential
and distributive mechanism, displayed in (2).

S0 + E
k1−⇀↽−
k2

S0E
k3−→ S1 + E

k4−⇀↽−
k5

S1E
k6−→ S2 + E

S2 + F
l1−⇀↽−
l2

S2F
l3−→ S1 + F

l4−⇀↽−
l5

S1F
l6−→ S0 + F

(2)

Note that (2) can be derived from (1) by setting k7 = l7 = 0. The mechanism is called sequential since
the phosphate groups attach to the binding sites of the compound in a certain sequence; the phosphate
group will always bind to site 1 before site 2. The mechanism is called distributive since S1E has the
choice of distributing to S2 + E or back to S1 + E, and similarly for S1F . It is unknown whether (2)
exhibits oscillations, although Wang and Sontag have shown through monotone systems theory that its
Michaelis-Menten (MM) approximation does not exhibit oscillations [8]. The same result has been shown
by Bozeman and Morales using the more simple Dulac’s criterion, which follows shortly from Green’s
theorem [1].

Another type of mechanism is the processive mechanism. A 2-site phosphorylation system with
sequential and processive mechanism can be seen in (3).

S0 + E
k1−⇀↽−
k2

S0E
k7−→ S1E

k6−→ S2 + E

S2 + F
l1−⇀↽−
l2

S2F
l7−→ S1F

l6−→ S0 + F

(3)

We note we may obtain (3) from (1) by setting rate constants k3 = k4 = k5 = l3 = l4 = l5 = 0. The
mechanism is called processive since S1E, unlike in a distributive mechanism, can only proceed to S2+E,
and similarly for S1F . It is known that processive systems converge and do not exhibit oscillations [2][3].
As such, the MM approximation also does not yield oscillations.

In reality, 2-site phosphorylation systems are generally neither purely distributive nor purely proces-
sive. Thus, this paper will focus on the existence of oscillations in the MM approximation of (1), which
is a mix of the processive and distributive systems. Section 2 details the process of obtaining the MM
approximation. Section 3 gives a necessary condition for the existence of oscillations. This condition is
able to again show the lack of oscillations in distributive systems as well as to prove a new result, the
lack of oscillations in the mixed-mechanism network seen in (22). The code used for this project can be
found in the appendices.

Michaelis-Menten System and Reduction

We would like to examine the chemical reaction network in (1). The work in this section will closely match
the work of Bozeman and Morales [1]. For convenience, we will refer to the compounds S0E,S1E,S2F,
and S1F as C1, C2, C3, and C4, respectively. Then, using mass action kinetics we arrive at the systems
of equations

d[S0]

dt
= l6[C4]− k1[S0][E] + k2[C1], (4a)

d[S2]

dt
= k6[C2]− l1[S2][F] + l2[C3], (4b)

d[S1]

dt
= k3[C1]− k4[S1][E] + k5[C2] + l3[C3] + l5[C4]− l4[S1][F], (4c)

d[E]

dt
= (k2 + k3)[C1] + (k5 + k6)[C2]− k1[S0][E]− k4[S1][E], (4d)

2

d[F]

dt
= (l2 + l3)[C3] + (l5 + l6)[C4]− l1[S2][F]− l4[S1][F], (4e)

d[S0]

dt
= l6[C4]− k1[S0][E] + k2[C1], (4f)

d[C1]

dt
= k1[S0][E]− (k2 + k3)[C1]− k7[C1], (4g)

d[C2]

dt
= k4[S1][E]− (k5 + k6)[C2] + k7[C1], (4h)

d[C3]

dt
= l1[S2][F]− (l2 + l3)[C3]− l7[C3], (4i)

d[C4]

dt
= l4[S1][F]− (l5 + l6)[C4] + l7[C3]. (4j)

Further examining (1) gives the conservation laws

ST = [S0] + [S1] + [S2] + [C1] + [C2] + [C3] + [C4],

ET = [E] + [C1] + [C2],

FT = [F] + [C3] + [C4].

(5)

We may remove S1, E, and F through conservation equations and as such we remove (4c), (4d), and
(4e) from (4). Now, we use Michaelis-Menten theory to reduce our system. We scale all variables other
than S0, S1, S2, ST by ε to get

ET = εẼT , FT = εF̃T , [Ci] = ε[C̃i], [E] = ε[Ẽ], [F] = ε[F̃], τ = εt. (6)

The idea behind the scaling is the assumption that the concentration of intermediates is low relative
to the substrates. Substituting in the scalings from (6), we obtain

d[S0]

dτ
= l6[C̃4]− k1[S0][Ẽ] + k2[C̃1],

d[S2]

dτ
= k6[C̃2]− l1[S2][F̃] + l2[C̃3],

ε
d[C̃1]

dτ
= k1[S0][Ẽ]− (k2 + k3)[C̃1]− k7[C̃1],

ε
d[C̃2]

dτ
= k4[S1][Ẽ]− (k5 + k6)[C̃2] + k7[C̃1],

ε
d[C̃3]

dτ
= l1[S2][F̃]− (l2 + l3)[C̃3]− l7[C̃3],

ε
d[C̃4]

dτ
= l4[S1][F̃]− (l5 + l6)[C̃4] + l7[C̃3],

(7)

with new conservation equations

ST = [S0] + [S1] + [S2] + ε[C̃1] + ε[C̃2] + ε[C̃3] + ε[C̃4],

ẼT = [Ẽ] + [C̃1] + [C̃2],

F̃T = [F̃] + [C̃3] + [C̃4].

(8)

Now, we approximate the system by setting ε = 0 in (7) and (8). This yields the new equations for
the substrates

d[S0]

dτ
= l6[C̃4]− k1[S0][Ẽ] + k2[C̃1],

d[S2]

dτ
= k6[C̃2]− l1[S2][F̃] + l2[C̃3],

(9)

the new equations for the intermediates

0 = k1[S0][Ẽ]− (k2 + k3)[C̃1]− k7[C̃1],

0 = k4[S1][Ẽ]− (k5 + k6)[C̃2] + k7[C̃1],

0 = l1[S2][F̃]− (l2 + l3)[C̃3]− l7[C̃3],

0 = l4[S1][F̃]− (l5 + l6)[C̃4] + l7[C̃3],

(10)

3

and the new conservation equations

ST = [S0] + [S1] + [S2],

ẼT = [Ẽ] + [C̃1] + [C̃2],

F̃T = [F̃] + [C̃3] + [C̃4].

(11)

From (10) we obtain the equations

[C̃1] =
k1

k2 + k3 + k7
[S0][Ẽ],

[C̃2] =
k4[S1][Ẽ] + k7[C̃1]

k5 + k6

=
k4[S1][Ẽ]

k5 + k6
+

k1k7[S0][Ẽ]

(k5 + k6)(k2 + k3 + k7)
,

[C̃3] =
l1

l2 + l3 + l7
[S2][F̃],

[C̃4] =
l4[S1][F̃] + l7[C̃3]

l5 + l6

=
l4[S1][F̃]

l5 + l6
+

l1l7[S2][F̃]

(l5 + l6)(l2 + l3 + l7)
.

(12)

Substituting the expressions for [C̃i] in 12 into (11) gives

ẼT = [Ẽ]

[
1 +

k1
k2 + k3 + k7

[S0] +
k4[S1]

k5 + k6
+

k1k7[S0]

(k5 + k6)(k2 + k3 + k7)

]
,

F̃T = [F̃]

[
1 +

l1
l2 + l3 + l7

[S2] +
l4[S1]

l5 + l6
+

l1l7[S2]

(l5 + l6)(l2 + l3 + l7)

]
.

(13)

Substituting (12) and (13) into (9) and assigning some new variables in (15) yields the system

d[S0]

dτ
=

a1[S1][F̃T]

1 + c2[S1] + d1[S2]
+

a2[S2][F̃T]

1 + c2[S1] + d1[S2]
− a3[S0][ẼT]

1 + b1[S0] + c1[S1]
,

d[S2]

dτ
=

a4[S1][ẼT]

1 + b1[S0] + c1[S1]
+

a5[S0][ẼT]

1 + b1[S0] + c1[S1]
− a6[S2][F̃T]

1 + c2[S1] + d1[S2]
,

(14)

where

b1 =
k1(k5 + k6 + k7)

(k2 + k3 + k7)(k5 + k6)
,

c1 =
k4

k5 + k6
,

a1 =
l4l6
l5 + l6

,

a2 =
l1l6l7

(l2 + l3 + l7)(l5 + l6)
,

a3 =
k1(k3 + k7)

(k2 + k3 + k7)
,

d1 =
l1(l5 + l6 + l7)

(l2 + l3 + l7)(l5 + l6)
,

c2 =
l4

l5 + l6
,

a4 =
k4k6
k5 + k6

,

a5 =
k1k6k7

(k2 + k3 + k7)(k5 + k6)
,

a6 =
l1(l3 + l7)

(l2 + l3 + l7)
,

(15)

with conservation equation

ST = [S0] + [S1] + [S2]. (16)

From (16), we obtain [S1] = ST − [S0]− [S2]. Substituting this into (14) yields a system of only two
variables, as seen below. This system is our MM approximation.

d[S0]

dτ
=

(a1(ST − [S0]− [S2]) + a2[S2])[F̃T]

1 + c2(ST − [S0]− [S2]) + d1[S2]
− a3[S0][ẼT]

1 + b1[S0] + c1(ST − [S0]− [S2])
,

d[S2]

dτ
=

(a4(ST − [S0]− [S2]) + a5[S0])[ẼT]

1 + b1[S0] + c1(ST − [S0]− [S2])
− a6[S2][F̃T]

1 + c2(ST − [S0]− [S2]) + d1[S2]
.

(17)

Necessary Condition for Oscillations in the MM System

To analyze (17), we use Dulac’s Criterion, which is also called the Bendixson-Dulac theorem and Bendix-
son’s criterion.

4

Theorem 1. (Dulac’s Criterion) Let dx
dt

= f(x, y) and dy
dt

= g(x, y) be a system of ODEs defined on a

simply connected region D of R2. If ∂f
∂x

+ ∂g
∂y

is always positive or always negative on the region D, the
system does not exhibit oscillations contained in region D.

We are now ready to prove the main result of this paper, Theorem 2.

Theorem 2. Assume a3 + a4 > 0 and a1 + a6 > 0. In order for the MM approximation (17) to exhibit
oscillations, one of the following must be true:

(a5c1 − a4b1 − a3c1)ST ≥ a3 + a4

or

(a2c2 − a1d1 − a6c2)ST ≥ a1 + a6.

Proof. We now apply Dulac’s Criterion to (17) with f([S0], [S2]) := d[S0]
dτ

, g([S0], [S2]) := d[S2]
dτ

, and

H := ∂f
∂[S0]

+ ∂g
∂[S2]

on the region D := {([S0], [S2]) ∈ R2 | [S0] ≥ 0, [S2] ≥ 0, [S0] + [S2] ≤ ST }. It is
straightforward to check that

H(0, 0) = −ẼT
a3c1ST + a3 + a4

(c1ST + 1)2
− F̃T

a6c2ST + a1 + a6
(c2ST + 1)2

< 0. (18)

Then by Theorem 1, for our reduced system to have oscillations, there must be a point ([S0], [S2]) in
our domain such that H([S0], [S2]) ≥ 0. Simplifying, we find that H([S0], [S2]) ≥ 0 is equivalent to the
following inequality:

ẼT (c2[S1] + d1[S2] + 1)2((a5c1 − a4b1)[S0] + a3c1[S2]− a3c1ST − a3 − a4)

+F̃T (c1[S1] + b1[S0] + 1)2(a6c2[S0] + (a2c2 − a1d1)[S2]− a6c2ST − a1 − a6) ≥ 0.
(19)

In order for (19) to hold it is necessary for one of the two following expressions to be positive.

(a5c1 − a4b1)[S0] + a3c1[S2]− a3c1ST − a3 − a4, (20a)

a6c2[S0] + (a2c2 − a1d1)[S2]− a6c2ST − a1 − a6. (20b)

For our domain D, we note that the maxima of (20a) and (20b), respectively, are

(max(a5c1 − a4b1, a3c1)− a3c1)ST − a3 − a4, (21a)

(max(a2c2 − a1d1, a6c2)− a6c2)ST − a1 − a6. (21b)

Then, in order for (20a) or (20b) to be positive it is necessary that max(a5c1−a4b1, a3c1) = a5c1−a4b1
or max(a2c2 − a1d1, a6c2) = a2c2 − a1d1. Thus, it is necessary that

(a5c1 − a4b1 − a3c1)ST − a3 − a4 ≥ 0

or

(a2c2 − a1d1 − a6c2)ST − a1 − a6 ≥ 0,

showing our desired result. The code assisting with the algebra of this proof can be found in Appendix
A.

The assumptions stated in Theorem 2 are biologically reasonable; if a3 + a4 = 0, then k1 = 0
or k3 = k7 = 0, which would result in S0 not being able to become S2. Analysis on the condition
a1 + a6 > 0 follows similarly.

With Theorem 2 we obtain the following corollaries on a purely distributive system, a purely processive
system, and another subsystem known as the mixed-mechanism network, seen in (22). First, we
recover the earlier result that the distributive network does not exhibit oscillations [1][8].

Corollary 3. The MM approximation of the distributive model (2) does not admit oscillations.

Proof. In the distributive model (2), the mass action constants k7, l7 are set to 0 while the others are
positive, which implies that a2 = a5 = 0. Substituting these values into the inequalities of Theorem
2 gives −(a4b1 + a3c1)ST ≥ a3 + a4 and −(a1d1 + a6c2)ST ≥ a1 + a6. Note that the left hand sides
−(a4b1 + a3c1)ST and −(a1d1 + a6c2)ST are negative while the right hand sides a3 + a4 and a1 + a6 are
positive. Thus, neither inequality holds and the system has no oscillations.

5

Next, we show that the processive model does not exhibit oscillations. This is to be expected from
work by Conradi & Shiu and Eithun & Shiu, who show that processive multisite phosphorylation networks
do not exhibit oscillations [2][3]. As the original does not exhibit oscillations, it is reasonable to expect
the MM approximation to nto exhibit oscillations as well.

Corollary 4. The MM approximation of the processive model (3) does not admit oscillations.

Proof. In the processive model (3), the mass action constants k3, k4, k5, l3, l4, l5 are set to 0 while the
others are positive, which implies that c1 = c2 = a1 = a4 = 0. Substituting these values into the
inequalities of Theorem 2 gives 0 ≥ a3 and 0 ≥ a6. Neither inequality holds as by assumption a3 and a6
are positive.

The next corollary gives a new result for the MM approximation of the mixed-mechanism network,
seen in (22).

S0 + E
k1−⇀↽−
k2

S0E
k7−→ S1E

k6−→ S2 + E (22a)

S2 + F
l1−⇀↽−
l2

S2F
l3−→ S1 + F

l4−⇀↽−
l5

S1F
l6−→ S0 + F (22b)

The mixed-mechanism network can be obtained from our original system (1) by setting k3 = k4 =
k5 = l7 = 0. It is called the mixed-mechanism network since (22a) is processive while (22b) is distribu-
tive. Corollary 5 is of particular interest because Suwanmajo and Krishnan showed that the original
mixed-mechanism system does exhibit oscillations [7], even though corollary 5 proves that the MM ap-
proximation of the mixed-mechanism does not admit oscillations. This serves as a good reminder that
the MM approximation is an approximation, and information is lost in exchange for ease of algebra.

Corollary 5. The MM approximation of the mixed-mechanism network does not admit oscillations.

Proof. In (22), the mass action constants k3, k4, k5, l7 are set to 0 while the others are positive, which
implies that c1 = a2 = a4 = 0. Substituting these values into the inequalities of Theorem 2 gives 0 ≥ a3
and −(a1d1 + a6c2)ST ≥ a1 + a6. Note that the left hand sides 0 and −(a1d1 + a6c2)ST are not positive
while the right hand sides a3 and a1 +a6 are positive. Thus, neither inequality holds and the system has
no oscillations.

Discussion

The goal of this paper was to investigate oscillations in the general sequential 2-site phosphorylation
network with both processive and distributive elements. We began by using mass action kinetics to write
our network as a system of ODEs. We then made assumptions on the concentration of intermediates to
obtain the MM approximation. Using Theorem 1 (Dulac’s criterion), we obtained a necessary condition
for oscillations in the MM approximation, Theorem 2. Using Theorem 2, we were able to confirm the
lack of oscillations in the distributive network and processive network as well as show for the first time
that the MM approximation of the mixed-mechanism network exhibits no oscillations.

The natural next step is to ask whether there ever exists oscillations in the MM approximation of
the general case. Numerical experimentation suggests not. In my code in Appendix B, I randomly
substituted the integers 1 through 10 into the parameters in (15) and the conservation law constants
in (5). Upon substitution, my code calculates the sign of the minimum and maximum values the sum
in Dulac’s criterion can take, thus determining whether Dulac’s criterion precludes oscillations for a
parameter set. This left roughly 5% of parameter sets that potentially exhibit oscillations.

I then generated 300 parameter sets that potentially exhibited oscillations and performed a vector
plot. A point was colored blue, yellow, green, or red when the direction vector was pointing in quadrant
I, II, III, or IV, respectively. One example can be seen in Figure 2. Only 3 of the 300 figures contained
all 4 colors, which is necessary for oscillations. As such, it would seem at the least rare for oscillations
to occur in the MM approximation.

As no confirmed instances of oscillations have been found, it may be possible that oscillations are not
obtainable. One potential route to a proof of no oscillations in the general case would be to generalize
the work of Wang and Sontag [8]. The main theorem of their paper, which was used to show the lack
of oscillations in the distributive MM approximation, relies on 7 conditions holding. The conditions and
theorem can be found in section 2 of their paper. The first through fifth have been shown to hold for the
general case and the seventh is believed to hold; see Appendix D for code on the first through fifth. The

6

Figure 2: The colored vector plot with parameters a1 = 2, a2 = 9, a3 = 3, a4 = 6, a5 =
9, a6 = 8, b1 = 3, c1 = 9, c2 = 4, d1 = 1, ẼT = 6, F̃T = 3, ST = 2. The x and y axes are
[S0] and [S2] respectively. The points of a vector plot are colored blue, yellow, green,
or red when the direction vector is pointing in quadrant I, II, III, or IV, respectively.
As only 3 of the colors are exhibited, this parameter set does not admit oscillations.
This plot was generated through Sage and can be found in Appendix C.

sixth condition A6 is where the majority of the difficulty is expected to lie. As seen in Figure 3, finding
a cone to work over that results in a proof of A6 may prove challenging, or even impossible.

Figure 3: The plot of a solution with initial value (0, 8) and parameters a1 = 5, a2 =

1, a3 = 6, a4 = 6, a5 = 8, a6 = 10, b1 = 1, c1 = 10, c2 = 3, d1 = 10, ẼT = 3, F̃T =
8, ST = 8. The x and y axes are [S0] and [S2] respectively. The trajectory leaves
the initial value and heads for the fixed point near (4.5, 2). The way the trajectory
overshoots the fixed point, then doubles back may make it difficult to apply monotone
systems theory. This plot was generated through Python and can be found in Appendix
E.

Another question arising from this project is the legitimacy of using the MM approximation. As we
saw with the mixed-mechanism network, lack of oscillations in the MM approximation does not imply
lack of oscillations in the original network. A more obvious way in which the MM approximation differs
from the original is in the apparent violation of conservation laws. As seen in Figure 4, despite the
conservation law [S0] + [S1] + [S2] = ST = 2 which implies [S0] + [S2] ≤ ST = 2, the vector plot indicates
many solutions which exit the domain. In other words, behavior near the [S1] = 0 diagonal in Figure
4 is not biologically realistic. Such violations are not present in the original system. As such, further
research into what information is preserved when performing MM approximation may prove interesting.

7

Figure 4: The vector plot with parameters a1 = 2, a2 = 9, a3 = 3, a4 = 6, a5 = 9, a6 =
8, b1 = 3, c1 = 9, c2 = 4, d1 = 1, ẼT = 6, F̃T = 3, ST = 2. The x and y axes are [S0] and
[S2] respectively. We can see solutions crossing the boundary S0 + S2 = ST = 2. This
plot was generated through Sage and can be found in Appendix C.

Acknowledgements

This project would not have been possible without the mentorship of Dr. Anne Shiu and the support of
Jonathan Tyler. This research was conducted with funding from the NSF (DMS-1460766) at the REU
program of Texas A&M University, Summer 2017.

References

[1] Luna Bozeman and Adriana Morales. “No oscillations in the Michaelis-Menten approxi-
mation of the dual futile cycle under a sequential and distributive mechanism”. In: SIAM
Undergraduate Research Online 10 (2017), pp. 21–28.

[2] Carsten Conradi and Anne Shiu. “A Global Convergence Result for Processive Multisite
Phosphorylation Systems”. In: Bulletin of Mathematical Biology 77.1 (Jan. 2015), pp. 126–
155. issn: 1522-9602. doi: 10.1007/s11538-014-0054-4. url: http://dx.doi.org/10.
1007/s11538-014-0054-4.

[3] Mitchell Eithun and Anne Shiu. “An all-encompassing global convergence result for proces-
sive multisite phosphorylation systems”. In: Mathematical Biosciences 291 (2017), pp. 1–
9. issn: 0025-5564. doi: http://dx.doi.org/10.1016/j.mbs.2017.05.006. url:
http://www.sciencedirect.com/science/article/pii/S0025556417300160.

[4] Karsten Kruse and Frank Jülicher. “Oscillations in cell biology”. In: Current Opinion in
Cell Biology 17.1 (2005), pp. 20–26. issn: 0955-0674. doi: http://dx.doi.org/10.1016/
j.ceb.2004.12.007. url: http://www.sciencedirect.com/science/article/pii/
S0955067404001759.

[5] C. Salazar and T. Höfer. “Multisite protein phosphorylation - from molecular mechanisms
to kinetic models.” In: FEBS Journal 276.12 (2009), pp. 3177-3198.

[6] S.H. Strogatz. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chem-
istry, and Engineering. Studies in Nonlinearity. Avalon Publishing, 2014. isbn: 9780813349107.
url: https://books.google.com/books?id=aMrSDQAAQBAJ.

8

[7] Thapanar Suwanmajo and J. Krishnan. “Mixed mechanisms of multi-site phosphorylation”.
In: Journal of The Royal Society Interface 12.107 (2015). issn: 1742-5689. doi: 10.1098/
rsif.2014.1405. eprint: http://rsif.royalsocietypublishing.org/content/12/107/
20141405.full.pdf. url: http://rsif.royalsocietypublishing.org/content/12/
107/20141405.

[8] Liming Wang and Eduardo D. Sontag. “Singularly Perturbed Monotone Systems and an
Application to Double Phosphorylation Cycles”. In: Journal of Nonlinear Science 18.5 (Oct.
2008), pp. 527–550. issn: 1432-1467. doi: 10.1007/s00332- 008- 9021- 2. url: http:

//dx.doi.org/10.1007/s00332-008-9021-2.

9

Appendix A

This appendix contains the Python code used to work through the algebra of Theorem 2.

import sympy as sp
import datet ime

from IPython . d i sp l a y import d i s p l ay

print ”START” , datet ime . datet ime . now ()

a1 , a2 , a3 , a4 , a5 , a6 , b1 , c1 , c2 , d1 , S0 , S2 , ET, FT, ST, l0 , l2 , y = sp .
var (’ a1 a2 a3 a4 a5 a6 b1 c1 c2 d1 S0 S2 ET FT ST l 0 l 2 y ’)

S1 = ST − S0 − S2

#our MM approx e q u a t i o n s
dS0dt = a1∗S1∗FT/(1+c2∗S1+d1∗S2) + a2∗S2∗FT/(1+c2∗S1+d1∗S2) − a3∗S0∗ET/(1+

b1∗S0+c1∗S1)
dS2dt = a4∗S1∗ET/(1+b1∗S0+c1∗S1) + a5∗S0∗ET/(1+b1∗S0+c1∗S1) − a6∗S2∗FT/(1+

c2∗S1+d1∗S2)

print”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−”

#our sum of i n t e r e s t in Dulac
s = (sp . d i f f (dS2dt , S2) + sp . d i f f (dS0dt , S0))

#For o r i g i n case
sOr ig in = s . subs ({S0 : 0 , S2 : 0})
sOriginET = sOr ig in . c o e f f (ET, 1)
sOriginFT = sOr ig in . c o e f f (FT, 1)
sOriginET = sp . toge the r (sOriginET)
sOriginFT = sp . toge the r (sOriginFT)
print ”Numerator o f C o e f f i c i e n t o f ET f o r o r i g i n ”
d i sp l ay (sp . expand (sp . numer (sOriginET)))
print”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−”
print ”Numerator o f C o e f f i c i e n t o f FT f o r o r i g i n ”
d i sp l ay (sp . expand (sp . numer (sOriginFT)))
print”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−”
#Note s = ET∗ sOriginET + FT∗ sOriginFT

#For General Case
s = sp . toge the r (s)
sNum, sDen = sp . f r a c t i o n (s)
sNumET = sNum. c o e f f (ET, 1)
sNumFT = sNum. c o e f f (FT, 1)
print”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−”
print ”Numerator o f C o e f f i c i e n t o f ET in gene ra l case ”
d i sp l ay (sNumET. f a c t o r ())
print”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−”
print ”Numerator o f C o e f f i c i e n t o f FT in gene ra l case ”
d i sp l ay (sNumFT. f a c t o r ())
print”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−”
#Note s = (ET∗sNumET + FT∗sNumFT) /sDen

print ”END” , datet ime . datet ime . now ()

#
==

#For Showing D i s t r i b u t i v e

10

s = (sp . d i f f (dS2dt , S2) + sp . d i f f (dS0dt , S0))
s = s . subs ({ a2 : 0 , a5 : 0})
sET = s . c o e f f (ET, 1)
sFT = s . c o e f f (FT, 1)
sET = sp . t o g e t h e r (sET)
sFT = sp . t o g e t h e r (sFT)
d i s p l a y (sp . expand (sp . numer (sET)))
d i s p l a y (sp . expand (sp . numer (sFT)))
#

==

#
==

#For showing P r o c e s s i v e
s = (sp . d i f f (dS2dt , S2) + sp . d i f f (dS0dt , S0))
s = s . subs ({ c1 : 0 , c2 : 0 , a1 : 0 , a4 : 0})
sET = s . c o e f f (ET, 1)
sFT = s . c o e f f (FT, 1)
sET = sp . t o g e t h e r (sET)
sFT = sp . t o g e t h e r (sFT)
d i s p l a y (sET)
d i s p l a y (sFT)
#

==

11

Appendix B

This appendix contains the Python code used to generate 300 parameter sets which possibly exhibit
oscillations under Theorem 1 (Dulac’s Criterion).

import sympy as sp
import csv
import random
import datet ime

#Code genera te 300 examples t h a t can p o s s i b l y o s c i l l a t e from Dulac
#General idea i s genera te random parameters , then f i n d min and max
o f sum in Dulac and i f the s i g n s o f min and max are d i f f e r e n t

#check i f s i g n changes over the domain
def sameSign (expres s ion , ST, S0 , S2) :

boundaryBounds = getMaxBoundary (expres s i on , ST, S0 , S2)
in te r i o rBounds = getMaxInter ior (expres s ion , ST, S0 , S2)
return min(boundaryBounds [0] , in te r io rBounds [0]) == max(boundaryBounds

[1] , in te r io rBounds [1])

#check the s i g n s on the boundar ies o f the domain
def getMaxBoundary (expres s i on , ST, S0 , S2) :

case1 = getMaxBoundaryCase (expres s i on , 0 , ST, S0 , 0 , S2)
case2 = getMaxBoundaryCase (expres s i on , 0 , ST, S2 , 0 , S0)
case3 = getMaxBoundaryCase (expres s i on , 0 , ST, S2 , ST − S0 , S0)
return [min(case1 [0] , case2 [0] , case3 [0]) , max(case1 [1] , case2 [1] ,

case3 [1])]

#check the s i g n s on a boundary
def getMaxBoundaryCase (expres s i on , bound1 , bound2 , varToSubOut , replaceWith

, otherVar) :
case = expr e s s i on . subs ({varToSubOut : replaceWith })
d i f f = sp . d i f f (case , otherVar)
s o l s = sp . s o l v e (d i f f , otherVar)
b1 , b2 = sp . s i gn (case . subs ({ otherVar : bound1 })) , sp . s i gn (case . subs ({

otherVar : bound2 }))
maxCase = max(b1 , b2)
minCase = min(b1 , b2)
for s o l in s o l s :

i f s o l . i s r e a l and s o l > bound1 and s o l < bound2 :
maxCase = max(maxCase , sp . s i gn (case . subs ({ otherVar : s o l })))
minCase = min(minCase , sp . s i gn (case . subs ({ otherVar : s o l })))

return [minCase , maxCase]

#check f o r s i g n changes in i n t e r i o r o f boundary
def getMaxInter ior (expres s i on , ST, S0 , S2) :

dS0 = sp . numer (sp . toge the r (sp . d i f f (expre s s i on , S0)))
dS2 = sp . numer (sp . toge the r (sp . d i f f (expre s s i on , S2)))
s o l s = getSo lsWithResultant (dS0 , dS2 , ST)
maxCase = sp . s i gn (exp r e s s i on . subs ({S0 : 0 , S2 : 0}))
minCase = maxCase
for s o l in s o l s :

i f s o l [0] . i s r e a l and s o l [1] . i s r e a l and s o l [0] + s o l [1] < ST and
s o l [0] > 0 and s o l [1] > 0 :
maxCase = max(maxCase , sp . s i gn (exp r e s s i on . subs ({S0 : s o l [0] , S2

: s o l [1] })))
minCase = min(minCase , sp . s i gn (exp r e s s i on . subs ({S0 : s o l [0] , S2

: s o l [1] })))
return [minCase , maxCase]

12

#use r e s u l t a n t s to g e t s o l u t i o n s to exp1 , exp2 t h a t are in domain
def getSo lsWithResultant (exp1 , exp2 , ST1) :

s o l s = []
resS0 = sp . r e s u l t a n t (exp1 , exp2 , S0)
resS2 = sp . r e s u l t a n t (exp1 , exp2 , S2)
S 2 s o l s = sp . s o l v e (resS0 , S2)
S 0 s o l s = sp . s o l v e (resS2 , S0)
for x in S 0 s o l s :

for y in S 2 s o l s :
i f x>0 and y>0 and x+y <ST1 and exp1 . subs ({S0 : x , S2 : y}) ==

0 and exp2 . subs ({S0 : x , S2 : y}) == 0 :
s o l s . append ([x , y])

return s o l s

print ”START” , datet ime . datet ime . now ()

a1 , a2 , a3 , a4 , a5 , a6 , b1 , c1 , c2 , d1 , S0 , S2 , ET, FT, ST = sp . symbols (’ a1
a2 a3 a4 a5 a6 b1 c1 c2 d1 S0 S2 ET FT ST ’ , r e a l = True)

S1 = ST − S0 − S2

#the MM approx e q u a t i o n s
dS0dt = a1∗S1∗FT/(1+c2∗S1+d1∗S2) + a2∗S2∗FT/(1+c2∗S1+d1∗S2) − a3∗S0∗ET/(1+

b1∗S0+c1∗S1)
dS2dt = a4∗S1∗ET/(1+b1∗S0+c1∗S1) + a5∗S0∗ET/(1+b1∗S0+c1∗S1) − a6∗S2∗FT/(1+

c2∗S1+d1∗S2)

dfdS0 = sp . d i f f (dS0dt , S0)
fgdS2 = sp . d i f f (dS2dt , S2)

#the sum of i n t e r e s t f o r Dulac
s = dfdS0 + fgdS2

keys = [a1 , a2 , a3 , a4 , a5 , a6 , b1 , c1 , c2 , d1 , ET, FT, ST]

counterexamples = []

while len (counterexamples) <300:
#genera te random parameters and p l ug i n t o equat ion s
params = [random . randint (1 , 10) for j in range (len (keys))]
paramDict = dict (zip (keys , params))
example = s . subs (paramDict)

try :
i f not sameSign (example , paramDict [ST] , S0 , S2) :

print ”Couterexample at ” , params
counterexamples . append (params)
i f len (counterexamples)%10 == 0 :

print ” Current ly at ” , len (counterexamples)
#every once in a w h i l e an equat ion can ’ t be so l ved , making a type err or
except TypeError :

pass

with open(’ counter s . csv ’ , ’wb ’) as f :
w r i t e r = csv . w r i t e r (f)
w r i t e r . wr i terows (counterexamples)

print ”End at ” , datet ime . datet ime . now ()

13

Appendix C

This appendix contains the Sage code used to produce Figures 2 and 4.

import datet ime
import sympy as sp

print ”START” , datet ime . datet ime . now ()

a1 , a2 , a3 , a4 , a5 , a6 , b1 , c1 , c2 , d1 , S0 , S2 , ET, FT, ST, l0 , l2 , y = var
(’ a1 a2 a3 a4 a5 a6 b1 c1 c2 d1 S0 S2 ET FT ST l 0 l 2 y ’)

S1 = ST − S0 − S2

dS0dt = a1∗S1∗FT/(1+c2∗S1+d1∗S2) + a2∗S2∗FT/(1+c2∗S1+d1∗S2) − a3∗S0∗ET/(1+
b1∗S0+c1∗S1)

dS2dt = a4∗S1∗ET/(1+b1∗S0+c1∗S1) + a5∗S0∗ET/(1+b1∗S0+c1∗S1) − a6∗S2∗FT/(1+
c2∗S1+d1∗S2)

s = dS0dt + dS2dt

#Assign v a l u e s to parameters and p lug in
keys = [a1 , a2 , a3 , a4 , a5 , a6 , b1 , c1 , c2 , d1 , ET, FT, ST]
params = [2 , 9 , 3 , 6 , 9 , 8 , 3 , 9 , 4 , 1 , 6 , 3 , 2]
paramDict = dict (zip (keys , params))
dS0 = dS0dt . s u b s t i t u t e (paramDict)
dS2 = dS2dt . s u b s t i t u t e (paramDict)

s t a r t i n g x = 0
s t a r t i n g y = 0

print ”Arrow Di r e c t i on o f vec to r p l o t . Tr iang l e i s domain”

p=r e g i o n p l o t ([dS2> 0 , dS0>0, S0+S2<=paramDict [ST]] , (S0 , s t a r t ingx , paramDict
[ST]) , (S2 , s t a r t ingy , paramDict [ST]) , i n c o l = ’ blue ’ , a x e s l a b e l s =[’ $S 0$
Concentrat ion ’ , ’ $S 2$ Concentrat ion ’] , t i t l e = ’ Colored Vector Plot o f $
(S 0 , S 2) $ ’)

p+=r e g i o n p l o t ([dS2< 0 , dS0>0, S0+S2<=paramDict [ST]] , (S0 , s t a r t ingx ,
paramDict [ST]) , (S2 , s t a r t ingy , paramDict [ST]) , i n c o l = ’ red ’)

p+=r e g i o n p l o t ([dS2> 0 , dS0<0, S0+S2<=paramDict [ST]] , (S0 , s t a r t ingx ,
paramDict [ST]) , (S2 , s t a r t ingy , paramDict [ST]) , i n c o l = ’ ye l low ’)

p+=r e g i o n p l o t ([dS2< 0 , dS0<0, S0+S2<=paramDict [ST]] , (S0 , s t a r t ingx ,
paramDict [ST]) , (S2 , s t a r t ingy , paramDict [ST]) , i n c o l = ’ green ’)

p+=r e g i o n p l o t ([dS2== 0 , dS0==0, S0+S2<=paramDict [ST]] , (S0 , s t a r t ingx ,
paramDict [ST]) , (S2 , s t a r t ingy , paramDict [ST]) , i n c o l = ’ gold ’)

p+=plo t (paramDict [ST]−S0 , (S0 , s t a r t ingx , paramDict [ST]) , c o l o r = ’ black ’)
p . show (axes = ”True”)
print ”Blue i s NE (Quadrant I) ”
print ”Red i s SE (Quadrant IV) ”
print ” Yellow i s NW (Quadrant I I) ”
print ”Green i s SW (Quadrant I I I) ”

print”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−”

print ”Region where Dulac sum i s p o s i t i v e i s green . Negative or 0 i s white ”
p3 = r e g i o n p l o t (d i f f (dS0 , S0) + d i f f (dS2 , S2) > 0 , (S0 , 0 , paramDict [ST]) , (

S2 , 0 , paramDict [ST]) , i n c o l = ’ green ’)
p3 +=plo t (paramDict [ST]−S0 , (S0 , s t a r t ingx , paramDict [ST]) , c o l o r = ’ black ’

)
p3 . show ()

14

print”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−”

print ” Vector Plot with Normalized Length”
p4 = p l o t v e c t o r f i e l d ((dS0/ s q r t (dS0∗∗2+dS2∗∗2) , dS2/ s q r t (dS0∗∗2+dS2∗∗2)) , (

S0 , 0 , paramDict [ST]) , (S2 , 0 , paramDict [ST]) , c o l o r = ’ blue ’ , a s p e c t r a t i o
=1, a x e s l a b e l s =[’ $S 0$ Concentrat ion ’ , ’ $S 2$ Concentrat ion ’] , t i t l e = ’
Vector Plot o f $ (S 0 , S 2) $ ’)

p4 +=plo t (paramDict [ST]−S0 , (S0 , s t a r t ingx , paramDict [ST]) , c o l o r = ’ black ’
)

p4 . show ()

print”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−”

print ”END” , datet ime . datet ime . now ()

15

Appendix D

This appendix contains the Python code used to show A1 through A5 in Wang and Sontag’s paper for
the network in (1) [8].

import sympy as sp
import datet ime
from sympy . abc import e p s i l o n

print ”START” , datet ime . datet ime . now ()

k1 , k2 , k2plusk3 , k4 , k5plusk6 , k6 , k7 , l1 , l2 , l 2 p l u s l 3 , l4 , l 5 p l u s l 6 , l6 ,
l7 , C1 , C2 , C3 , C4 , S0 , S2 , ET, FT, ST = sp . symbols (’ k1 k2 k2plusk3 k4

k5plusk6 k6 k7 l 1 l 2 l 2 p l u s l 3 l 4 l 5 p l u s l 6 l 6 l 7 C1 C2 C3 C4 S0 S2 ET FT
ST ’)

S1 = ST− S0−S2−e p s i l o n ∗C1−e p s i l o n ∗C2−e p s i l o n ∗C3−e p s i l o n ∗C4
E = ET − C1 − C2
F = FT − C3 − C4

f = [l 6 ∗C4 − k1∗S0∗E+k2∗C1 , k6∗C2−l 1 ∗S2∗F+l 2 ∗C3]
g = [k1∗S0∗E − (k2plusk3+k7) ∗C1 , k4∗S1∗E−(k5plusk6) ∗C2+k7∗C1 , l 1 ∗S2∗F − (

l 2 p l u s l 3+l 7) ∗C3 , l 4 ∗S1∗F−(l 5 p l u s l 6) ∗C4+l 7 ∗C3]

g0 = [expr . subs ({ e p s i l o n : 0}) for expr in g]

C2fromC1 = sp . s o l v e (g0 [0] , [C2]) [0]
C4fromC3 = sp . s o l v e (g0 [2] , [C4]) [0]

reduced = [g0 [1] . subs ({C2 : C2fromC1 , C4 : C4fromC3}) , g0 [3] . subs ({C2 :
C2fromC1 , C4 : C4fromC3})]

#A2
C1sol = sp . s i m p l i f y (sp . s o l v e (reduced [0] , C1) [0])
C2sol = sp . s i m p l i f y (C2fromC1 . subs ({C1 : C1sol }))
C3sol = sp . s i m p l i f y (sp . s o l v e (reduced [1] , C3) [0])
C4sol = sp . s i m p l i f y (C4fromC3 . subs ({C3 : C3sol }))

#A4
J = sp . Matrix (g0) . j a cob ian ([C1 , C2 , C3 , C4])
e igenJ = J . e i g e n v a l s ()

#eigenJ . keys () [0] has − r e a l par t s i n c e S0+S2<=ST
#eigenJ . keys () [1] by above
#to check e igenJ [2] use code be low to g e t l a l a >0
which i m p l i e s − r e a l par t
#eigenJ . keys () [3] f o l l o w s by symmetry

e igen3 = 2∗ e igenJ . keys () [2]
sq r tPart = e igen3 . args [0]
otherPart = sum(e igen3 . args [1 :])
l a l a = sp . s i m p l i f y (otherPart∗∗2− sqr tPart ∗∗2) /4

#A3 f o l l o w s from A4 . See Hurwitz s t a b l e matr ices
#A5 h o l d s a u t o m a t i c a l l y
print ”End at ” , datet ime . datet ime . now ()

16

Appendix E

This appendix contains the Python code used to generate the plot in Figure 3.

import sympy as sp
import numpy as np
import datet ime
from s c ipy import i n t e g r a t e
import matp lo t l i b . pyplot as p l t

print ”START” , datet ime . datet ime . now ()

a1 , a2 , a3 , a4 , a5 , a6 , b1 , c1 , c2 , d1 , S0 , S2 , ET, FT, ST = sp . symbols (’ a1
a2 a3 a4 a5 a6 b1 c1 c2 d1 S0 S2 ET FT ST ’)

S1 = ST − S0 − S2

#Our system
dS0dt = a1∗S1∗FT/(1+c2∗S1+d1∗S2) + a2∗S2∗FT/(1+c2∗S1+d1∗S2) − a3∗S0∗ET/(1+

b1∗S0+c1∗S1)
dS2dt = a4∗S1∗ET/(1+b1∗S0+c1∗S1) + a5∗S0∗ET/(1+b1∗S0+c1∗S1) − a6∗S2∗FT/(1+

c2∗S1+d1∗S2)

keys = [a1 , a2 , a3 , a4 , a5 , a6 , b1 , c1 , c2 , d1 , ET, FT, ST]

#Plug in parameter v a l u e s
params = [5 , 1 , 6 , 6 , 8 , 10 , 1 , 10 , 3 , 10 , 3 , 8 , 8]
paramDict = dict (zip (keys , params))
dS0dtNum = dS0dt . subs (paramDict)
dS2dtNum = dS2dt . subs (paramDict)

def der iv (y , t) :
return [dS0dtNum . subs ({S0 : y [0] , S2 : y [1] }) , \

dS2dtNum . subs ({S0 : y [0] , S2 : y [1] })]

#s e t t i m e s c a l e to e v a l u a t e over and s o l v e
time = np . arange (0 , 10 , 0 . 0001)
s o l = i n t e g r a t e . ode int (der iv , [0 , 8] , time)

#Generate p l o t s
l a b e l s = [” $S 0$ ” , ” $S 2$ ”]
for k in range (len (l a b e l s)) :

y = [s o l [i] [k] for i in range (len (s o l))]
p l t . p l o t (time , y , l a b e l = l a b e l s [k])

p l t . l egend (l o c = 1)
p l t . t i t l e (”$S 0 , S 2$ with Respect to Time”)
p l t . x l a b e l (”Time”)
p l t . y l a b e l (” Concentrat ion ”)
p l t . s a v e f i g (’ output . png ’ , dpi = 300)
p l t . show ()
p l t . c l o s e ()

p l t . p l o t ([s o l [i] [0] for i in range (len (s o l))] , [s o l [i] [1] for i in range (
len (s o l))])

p l t . xl im ([0 , paramDict [ST]])
p l t . yl im ([0 , paramDict [ST]])
p l t . t i t l e (” Tra jec tory o f $S 0 , S 2$ with I n i t i a l Value $ (0 , 8) $”)
p l t . x l a b e l (” $S 0$ ”)
p l t . y l a b e l (” $S 2$ ”)
p l t . s a v e f i g (’ output . png ’ , dpi = 300)
p l t . show ()

17

p l t . c l o s e ()

print ”END” , datet ime . datet ime . now ()

18

