Classifying Strictly Weakly Integral Modular Categories of Dimension 16p

Elena Amparo

College of William and Mary

July 18, 2017

Categories

Category \mathcal{C}

- A class of objects $\mathrm{Ob}(\mathcal{C})$
- A class of associative morphisms $\operatorname{Hom}_{\mathcal{C}}(X, Y)$ between each pair of objects $X, Y \in \mathrm{Ob}(\mathcal{C})$

Fusion Categories

Fusion Categories

- Abelian \mathbb{C}-linear

Fusion Categories

- Abelian \mathbb{C}-linear
- Monoidal $\rightarrow(\mathrm{Ob}(\mathcal{C}), \otimes, \mathbb{1})$ is a monoid

Fusion Categories

- Abelian \mathbb{C}-linear
- Monoidal $\rightarrow(\mathrm{Ob}(\mathcal{C}), \otimes, \mathbb{1})$ is a monoid
- Rigid \rightarrow every object X has left and right duals X^{*}

Fusion Categories

- Abelian \mathbb{C}-linear
- Monoidal $\rightarrow(\mathrm{Ob}(\mathcal{C}), \otimes, \mathbb{1})$ is a monoid
- Rigid \rightarrow every object X has left and right duals X^{*}
- Semisimple \rightarrow All objects are direct sums of simple objects

Fusion Categories

- Abelian \mathbb{C}-linear
- Monoidal $\rightarrow(\mathrm{Ob}(\mathcal{C}), \otimes, \mathbb{1})$ is a monoid
- Rigid \rightarrow every object X has left and right duals X^{*}
- Semisimple \rightarrow All objects are direct sums of simple objects
- Finite rank \rightarrow Finitely many isomorphism classes of simple objects

Fusion Categories

- Abelian \mathbb{C}-linear
- Monoidal $\rightarrow(\mathrm{Ob}(\mathcal{C}), \otimes, \mathbb{1})$ is a monoid
- Rigid \rightarrow every object X has left and right duals X^{*}
- Semisimple \rightarrow All objects are direct sums of simple objects
- Finite rank \rightarrow Finitely many isomorphism classes of simple objects
- $\mathbb{1}$ is simple

Modular Categories

Modular Categories

Definition

A fusion category \mathcal{C} is braided if there is a family of natural isomorphisms $C_{X, Y}: X \otimes Y \rightarrow Y \otimes X$ satisfying the hexagon axioms.

Modular Categories

Definition

A fusion category \mathcal{C} is braided if there is a family of natural isomorphisms $C_{X, Y}: X \otimes Y \rightarrow Y \otimes X$ satisfying the hexagon axioms.

Definition

The Müger center of a braided fusion category \mathcal{C} is defined

$$
Z_{2}(\mathcal{C})=\left\{X \in \mathcal{C}: C_{Y, X} \circ C_{X, Y}=\mathrm{id}_{X \otimes Y} \forall Y \in \mathcal{C}\right\}
$$

Modular Categories

Definition

A fusion category \mathcal{C} is braided if there is a family of natural isomorphisms $C_{X, Y}: X \otimes Y \rightarrow Y \otimes X$ satisfying the hexagon axioms.

Definition

The Müger center of a braided fusion category \mathcal{C} is defined

$$
Z_{2}(\mathcal{C})=\left\{X \in \mathcal{C}: C_{Y, X} \circ C_{X, Y}=\mathrm{id}_{X \otimes Y} \forall Y \in \mathcal{C}\right\}
$$

Definition

A modular category is a braided, spherical fusion category with trivial Müger center.

Classifying Modular Categories

Classifying Modular Categories

- Determine the number of simple objects of each dimension

Classifying Modular Categories

- Determine the number of simple objects of each dimension
- Determine fusion rules

$$
\begin{aligned}
& X_{i} \otimes X_{j}=\sum N_{X_{i}, X_{j}}^{X_{k}} X_{k} \\
& N_{X_{i}, X_{j}}^{X_{k}}=\left[X_{i} \otimes X_{j}: X_{k}\right]
\end{aligned}
$$

Frobenius-Perron Dimension

Definition

The Frobenius-Perron Dimension of a simple object X is the largest nonnegative eigenvalue of the matrix N_{X} of left-multiplication by X.

Frobenius-Perron Dimension

Definition
 The Frobenius-Perron Dimension of a simple object X is the largest nonnegative eigenvalue of the matrix N_{X} of left-multiplication by X.

Definition
 The Frobenius-Perron Dimension of a category \mathcal{C} is $\sum \operatorname{FPDim}\left(X_{i}\right)^{2}$ summed over all isomorphism classes of simple objects $X_{i} \in \mathcal{C}$.

Frobenius-Perron Dimension

Definition
 The Frobenius-Perron Dimension of a simple object X is the largest nonnegative eigenvalue of the matrix N_{X} of left-multiplication by X.

Definition

The Frobenius-Perron Dimension of a category \mathcal{C} is $\sum \operatorname{FPDim}\left(X_{i}\right)^{2}$ summed over all isomorphism classes of simple objects $X_{i} \in \mathcal{C}$.

Definition

A simple object X is invertible if $\operatorname{FPDim}(X)=1$. Equivalently, $X \otimes X^{*} \cong \mathbb{1} \cong X^{*} \otimes X$.

Frobenius-Perron Dimension

$\operatorname{FPDim}(X \oplus Y)=\operatorname{FPDim}(X)+\operatorname{FPDim}(Y)$

```
FPDim}(X\otimesY)=F\operatorname{FPDim}(X)\operatorname{FPDim}(Y
```

```
FPDim}(\mp@subsup{X}{}{*})=F\operatorname{FPDim}(X
```


Integral and Weakly Integral Fusion Categories

A fusion category \mathcal{C} is:

- pointed if $\operatorname{FPDim}\left(X_{i}\right)=1$ for all simple $X_{i} \in \mathcal{C}$
- integral if $\operatorname{FPDim}\left(X_{i}\right) \in \mathbb{Z}$ for all simple $X_{i} \in \mathcal{C}$
- weakly integral if $\operatorname{FPDim}(\mathcal{C}) \in \mathbb{Z}$

Integral and Weakly Integral Fusion Categories

A fusion category \mathcal{C} is:

- pointed if $\operatorname{FPDim}\left(X_{i}\right)=1$ for all simple $X_{i} \in \mathcal{C}$
- integral if $\operatorname{FPDim}\left(X_{i}\right) \in \mathbb{Z}$ for all simple $X_{i} \in \mathcal{C}$
- weakly integral if $\operatorname{FPDim}(\mathcal{C}) \in \mathbb{Z}$

In a weakly integral modular category \mathcal{C} :

- FPDim $\left(X_{i}\right)^{2} \mid$ FPDim (\mathcal{C}) for all simple objects $X_{i} \in \mathcal{C}$
- $\operatorname{FPDim}\left(X_{i}\right)=\sqrt{n}$ for some $n \in \mathbb{Z}^{+}$

Grading of a Fusion Category

Definition

A fusion category \mathcal{C} is graded by a group G if:

- $\mathcal{C}=\oplus_{g \in G} \mathcal{C}_{g}$ for abelian subcategories \mathcal{C}_{g}
- $\mathcal{C}_{g} \otimes \mathcal{C}_{h} \subset \mathcal{C}_{g h}$ for all $g, h \in G$

Grading of a Fusion Category

Definition

A fusion category \mathcal{C} is graded by a group G if:

- $\mathcal{C}=\oplus_{g \in G} \mathcal{C}_{g}$ for abelian subcategories \mathcal{C}_{g}
- $\mathcal{C}_{g} \otimes \mathcal{C}_{h} \subset \mathcal{C}_{g h}$ for all $g, h \in G$
- A grading is called faithful if all \mathcal{C}_{g} are nonempty.
- In a faithful grading, all components have dimension $\frac{\operatorname{FPDim}(\mathcal{C})}{|G|}$
- If a simple object $X \in \mathcal{C}_{g}$, then $X^{*} \in \mathcal{C}_{g^{-1}}$
- $\mathcal{C}_{e} \supset \mathcal{C}_{a d}$, the smallest fusion subcategory containing $X \otimes X^{*}$ for all simple X

Grading of a Fusion Category

Universal Grading

- Every fusion category is faithfully graded by its universal grading group, $\mathcal{U}(\mathcal{C})$
- Every faithful grading is a quotient of $\mathcal{U}(\mathcal{C})$
- In a modular category, $\mathcal{U}(\mathcal{C}) \cong \mathcal{G}(\mathcal{C})$
- $\mathcal{C}_{e}=\mathcal{C}_{\text {ad }}$

Grading of a Fusion Category

Universal Grading

- Every fusion category is faithfully graded by its universal grading group, $\mathcal{U}(\mathcal{C})$
- Every faithful grading is a quotient of $\mathcal{U}(\mathcal{C})$
- In a modular category, $\mathcal{U}(\mathcal{C}) \cong \mathcal{G}(\mathcal{C})$
- $\mathcal{C}_{e}=\mathcal{C}_{a d}$

GN-Grading

- A weakly integral fusion category is faithfully graded by an elementary abelian 2-group E
- Simple objects are partitioned by dimension: For each $g \in E$, there is a distinct square-free positive integer n_{g} with $n_{e}=1$ and FPDim $(X) \in \sqrt{n_{g}} \mathbb{Z}$ for all simple $X \in \mathcal{C}_{g}$
- $\mathcal{C}_{e}=\mathcal{C}_{\text {int }}$

Fusion Rules

For a simple object X,

$$
X \otimes X^{*} \cong \mathbb{1} \oplus \bigoplus_{\substack{C_{a d} \neq y \neq \mathbb{1} \\ y \otimes X \cong X}} y \oplus \bigoplus_{\substack{z \in \mathcal{C}_{\text {ad }} \\|z|>1}} N_{X, X^{*}}^{z} z
$$

$\operatorname{FPDim}(\mathcal{C})=16 p$

- $\operatorname{FPdim}\left(X_{i}\right) \in\{1,2,4, \sqrt{2}, 2 \sqrt{2}, \sqrt{p}, 2 \sqrt{p}, 4 \sqrt{p}, \sqrt{2 p}, 2 \sqrt{2 p}\}$ for all simple X_{i}
- $\sqrt{n_{g}} \in\{1, \sqrt{2}, \sqrt{p}, \sqrt{2 p}\}$
- $|E| \in\{2,4\}$

$\operatorname{FPDim}(\mathcal{C})=16 p, G N-G r a d i n g$

dim	1	2	4	$\sqrt{2}$	$2 \sqrt{2}$	\sqrt{p}	$2 \sqrt{p}$	$4 \sqrt{p}$	$\sqrt{2 p}$	$2 \sqrt{2 p}$
\# simples	a	b	c	f	d	h	k	l	m	n

$\operatorname{FPDim}(\mathcal{C})=16 p, G N-G r a d i n g$

dim	1	2	4	$\sqrt{2}$	$2 \sqrt{2}$	\sqrt{p}	$2 \sqrt{p}$	$4 \sqrt{p}$	$\sqrt{2 p}$	$2 \sqrt{2 p}$
\# simples	a	b	c	f	d	h	k	l	m	n

- $\left|\mathcal{C}_{\text {int }}\right|=\frac{|\mathcal{C}|}{|E|}$

$\operatorname{FPDim}(\mathcal{C})=16 p, G N-G r a d i n g$

dim	1	2	4	$\sqrt{2}$	$2 \sqrt{2}$	\sqrt{p}	$2 \sqrt{p}$	$4 \sqrt{p}$	$\sqrt{2 p}$	$2 \sqrt{2 p}$
\# simples	a	b	c	f	d	h	k	l	m	n

- $\left|\mathcal{C}_{\text {int }}\right|=\frac{|\mathcal{C}|}{|E|}$
- $\left|\mathcal{C}_{\text {int }}\right|=a+4 b+16 c$

$\operatorname{FPDim}(\mathcal{C})=16 p, G N-G r a d i n g$

dim	1	2	4	$\sqrt{2}$	$2 \sqrt{2}$	\sqrt{p}	$2 \sqrt{p}$	$4 \sqrt{p}$	$\sqrt{2 p}$	$2 \sqrt{2 p}$
\# simples	a	b	c	f	d	h	k	l	m	n

- $\left|\mathcal{C}_{\text {int }}\right|=\frac{|\mathcal{C}|}{|E|}$
- $\left|\mathcal{C}_{\text {int }}\right|=a+4 b+16 c$
- $a=\left|\mathcal{C}_{p t}\right|=|\mathcal{U}(\mathcal{C})|$
- $\left|\mathcal{C}_{p t}\right|\left|\left|\mathcal{C}_{i n t}\right|\right.$

$\operatorname{FPDim}(\mathcal{C})=16 p, G N-G r a d i n g$

dim	1	2	4	$\sqrt{2}$	$2 \sqrt{2}$	\sqrt{p}	$2 \sqrt{p}$	$4 \sqrt{p}$	$\sqrt{2 p}$	$2 \sqrt{2 p}$
\# simples	a	b	c	f	d	h	k	l	m	n

- $\left|\mathcal{C}_{\text {int }}\right|=\frac{|\mathcal{C}|}{|E|}$
- $\left|\mathcal{C}_{\text {int }}\right|=a+4 b+16 c$
- $a=\left|\mathcal{C}_{p t}\right|=|\mathcal{U}(\mathcal{C})|$
- $\left|\mathcal{C}_{p t}\right|\left|\left|\mathcal{C}_{\text {int }}\right|\right.$
- $|E|||\mathcal{U}(\mathcal{C})|$

$\operatorname{FPDim}(\mathcal{C})=16 p, G N-G r a d i n g$

dim	1	2	4	$\sqrt{2}$	$2 \sqrt{2}$	\sqrt{p}	$2 \sqrt{p}$	$4 \sqrt{p}$	$\sqrt{2 p}$	$2 \sqrt{2 p}$
\# simples	a	b	c	f	d	h	k	l	m	n

- $\left|\mathcal{C}_{\text {int }}\right|=\frac{|\mathcal{C}|}{|E|}$
- $\left|\mathcal{C}_{\text {int }}\right|=a+4 b+16 c$
- $a=\left|\mathcal{C}_{p t}\right|=|\mathcal{U}(\mathcal{C})|$
- $\left|\mathcal{C}_{p t}\right|\left|\left|\mathcal{C}_{\text {int }}\right|\right.$
- $|E|||\mathcal{U}(\mathcal{C})|$
- $|E|=2 \rightarrow a \in\{4,4 p, 8,8 p\}$
- $|E|=4 \rightarrow a \in\{4,4 p\}$

Example case: $|E|=2, a=8$

dim	1	2	4	$\sqrt{2}$	$2 \sqrt{2}$	\sqrt{p}	$2 \sqrt{p}$	$4 \sqrt{p}$	$\sqrt{2 p}$	$2 \sqrt{2 p}$
\# simples	a	b	c	f	d	h	k	l	m	n

- $\left|\mathcal{C}_{g}\right|=2 p=a_{g}+4 b_{g}+16 c_{g} \overline{\overline{4}} 2$

Example case: $|E|=2, a=8$

dim	1	2	4	$\sqrt{2}$	$2 \sqrt{2}$	\sqrt{p}	$2 \sqrt{p}$	$4 \sqrt{p}$	$\sqrt{2 p}$	$2 \sqrt{2 p}$
\# simples	a	b	c	f	d	h	k	l	m	n

- $\left|\mathcal{C}_{g}\right|=2 p=a_{g}+4 b_{g}+16 c_{g} \underset{\overline{\overline{4}}}{ } 2 \rightarrow a_{g}=2$ in all integral components

Example case: $|E|=2, a=8$

dim	1	2	4	$\sqrt{2}$	$2 \sqrt{2}$	\sqrt{p}	$2 \sqrt{p}$	$4 \sqrt{p}$	$\sqrt{2 p}$	$2 \sqrt{2 p}$
\# simples	a	b	c	f	d	h	k	l	m	n

- $\left|\mathcal{C}_{g}\right|=2 p=a_{g}+4 b_{g}+16 c_{g} \underset{\overline{4}}{ } 2 \rightarrow a_{g}=2$ in all integral components
- $\left(\mathcal{C}_{a d}\right)_{p t}=\{\mathbb{1}, g\}=\langle g\rangle \rightarrow\langle g\rangle$ is either modular or symmetric

Example case: $|E|=2, a=8$

dim	1	2	4	$\sqrt{2}$	$2 \sqrt{2}$	\sqrt{p}	$2 \sqrt{p}$	$4 \sqrt{p}$	$\sqrt{2 p}$	$2 \sqrt{2 p}$
\# simples	a	b	c	f	d	h	k	l	m	n

- $\left|\mathcal{C}_{g}\right|=2 p=a_{g}+4 b_{g}+16 c_{g} \underset{\overline{4}}{ } 2 \rightarrow a_{g}=2$ in all integral components
- $\left(\mathcal{C}_{a d}\right)_{p t}=\{\mathbb{1}, g\}=\langle g\rangle \rightarrow\langle g\rangle$ is either modular or symmetric
- If $\langle g\rangle$ is symmetric, it is either sVec or $\operatorname{Rep}\left(\mathbb{Z}_{2}\right)$

Case i: $B=\langle g\rangle$ is modular

Case $\mathrm{i}: B=\langle g\rangle$ is modular

For a fusion subcategory $\mathcal{D} \subseteq \mathcal{C}$, we denote the relative center by

$$
Z_{\mathcal{C}}(\mathcal{D})=\left\{X \in \mathcal{C}: C_{Y, X} \circ C_{X, Y}=\mathrm{id}_{X \otimes Y} \forall Y \in \mathcal{D}\right\}
$$

Case $\mathrm{i}: B=\langle g\rangle$ is modular

For a fusion subcategory $\mathcal{D} \subseteq \mathcal{C}$, we denote the relative center by

$$
Z_{\mathcal{C}}(\mathcal{D})=\left\{X \in \mathcal{C}: C_{Y, X} \circ C_{X, Y}=\mathrm{id}_{X \otimes Y} \forall Y \in \mathcal{D}\right\}
$$

If $\mathcal{D} \subseteq \mathcal{C}$ are both modular, then $Z_{\mathcal{C}}(\mathcal{D})$ is also modular and $\mathcal{C} \cong \mathcal{D} \boxtimes Z_{\mathcal{C}}(\mathcal{D})$.

Case i: $B=\langle g\rangle$ is modular

For a fusion subcategory $\mathcal{D} \subseteq \mathcal{C}$, we denote the relative center by

$$
Z_{\mathcal{C}}(\mathcal{D})=\left\{X \in \mathcal{C}: C_{Y, X} \circ C_{X, Y}=\mathrm{id}_{X \otimes Y} \forall Y \in \mathcal{D}\right\}
$$

If $\mathcal{D} \subseteq \mathcal{C}$ are both modular, then $Z_{\mathcal{C}}(\mathcal{D})$ is also modular and $\mathcal{C} \cong \mathcal{D} \boxtimes Z_{\mathcal{C}}(\mathcal{D})$.

- $\mathcal{C} \cong B \boxtimes Z_{\mathcal{C}}(\mathcal{B})$
- $\left|Z_{\mathcal{C}}(\mathcal{B})\right|=8 p \rightarrow$ classified by Bruilliard, Plavnik, and Rowell

Case ii: $\langle g\rangle=s$ Vec

Case ii: $\langle g\rangle=\mathrm{sVec}$

If \mathcal{C} is modular, then $\mathcal{C}_{p t}=Z_{\mathcal{C}}\left(\mathcal{C}_{\text {ad }}\right)$.

Case ii: $\langle g\rangle=\mathrm{sVec}$

If \mathcal{C} is modular, then $\mathcal{C}_{p t}=Z_{\mathcal{C}}\left(\mathcal{C}_{a d}\right)$.

If \mathcal{D} is premodular and $\langle g\rangle=\operatorname{sVec} \subset Z_{\mathcal{C}}(\mathcal{D})$, then $g \otimes X \not \approx X$ for all simple $X \in \mathcal{D}$.

Case ii: $\langle g\rangle=\mathrm{sVec}$

If \mathcal{C} is modular, then $\mathcal{C}_{p t}=Z_{\mathcal{C}}\left(\mathcal{C}_{\text {ad }}\right)$.

If \mathcal{D} is premodular and $\langle g\rangle=\operatorname{sVec} \subset Z_{\mathcal{C}}(\mathcal{D})$, then $g \otimes X \nsubseteq X$ for all simple $X \in \mathcal{D}$.

- $\langle g\rangle=\operatorname{sVec} \subset \mathcal{C}_{p t}=Z_{\mathcal{C}}\left(\mathcal{C}_{a d}\right)$
- g stabilizes the simple objects of dimension 2 and 4 in $\mathcal{C}_{a d}$, a contradiction

Case iii: $\langle g\rangle=\operatorname{Rep}\left(\mathbb{Z}_{2}\right)$

Case iii: $\langle g\rangle=\operatorname{Rep}\left(\mathbb{Z}_{2}\right)$

\mathbb{Z}_{2}-de-equivariantization of \mathcal{C}

- new fusion category $\mathcal{C}_{\mathbb{Z}_{2}}$ with $\operatorname{FPDim}\left(\mathcal{C}_{\mathbb{Z}_{2}}\right)=\frac{\operatorname{FPDim}(\mathcal{C})}{2}$
- for each simple $X \in \mathcal{C}$ such that $g \otimes X \cong X$, there are two simple objects in $\mathcal{C}_{\mathbb{Z}_{2}}$ with dimension $\frac{\text { FPDim }(X)}{2}$
- for each pair of simple objects $X \nsupseteq Y$ such that $g \otimes X \cong Y$ (and $g \otimes Y \cong X$), there is one simple object in $\mathcal{C}_{\mathbb{Z}_{2}}$ with dimension $\operatorname{FPDim}(X)=\operatorname{FPDim}(Y)$

Case iii: $\langle g\rangle=\operatorname{Rep}\left(\mathbb{Z}_{2}\right)$

dim	1	2	4	$\sqrt{2}$	$2 \sqrt{2}$	\sqrt{p}	$2 \sqrt{p}$	$4 \sqrt{p}$	$\sqrt{2 p}$	$2 \sqrt{2 p}$
\# simples	a	b	c	f	d	h	k	l	m	n

The non-integral components of the universal grading of \mathcal{C} have either

- $f_{g} \overline{\overline{4}} p, d_{g}=\frac{p-f_{g}}{4}$
- $h_{g}=2$
- $m_{g}=1$

Case iii: $\langle g\rangle=\operatorname{Rep}\left(\mathbb{Z}_{2}\right)$

dim	1	2	4	$\sqrt{2}$	$2 \sqrt{2}$	\sqrt{p}	$2 \sqrt{p}$	$4 \sqrt{p}$	$\sqrt{2 p}$	$2 \sqrt{2 p}$
\# simples	a	b	c	f	d	h	k	l	m	n

The non-integral components of the universal grading of \mathcal{C} have either

- $f_{g} \equiv p, d_{g}=\frac{p-f_{g}}{4}$
- $\mathbf{h}_{\mathrm{g}}=\mathbf{2}$
- $m_{g}=1$

Simple objects of dimension $\sqrt{2}$ and $\sqrt{2 p}$ are stabilized by g by parity. But $\frac{\sqrt{2}}{2}$ and $\frac{\sqrt{2 p}}{2}$ cannot be the dimensions of simple objects in a fusion category. So the non-integral component of \mathcal{C} must have simple objects of dimension \sqrt{p}.

Case iii: $\langle g\rangle=\operatorname{Rep}\left(\mathbb{Z}_{2}\right)$

dim	1	2	4	\sqrt{p}
\# simples	a	b	c	h

Case iii: $\langle g\rangle=\operatorname{Rep}\left(\mathbb{Z}_{2}\right)$

dim	1	2	4	\sqrt{p}
\# simples	a	b	c	h

$$
\begin{aligned}
& a^{\prime}=4+2 b \\
& b^{\prime}=2 c \\
& h^{\prime}=4
\end{aligned}
$$

Case iii: $\langle g\rangle=\operatorname{Rep}\left(\mathbb{Z}_{2}\right)$

dim	1	2	4	\sqrt{p}
\# simples	a	b	c	h

$$
\begin{aligned}
& a^{\prime}=4+2 b \\
& b^{\prime}=2 c \\
& h^{\prime}=4
\end{aligned}
$$

$$
\left|\left(\mathcal{C}_{\mathbb{Z}_{2}}\right)_{\text {int }}\right|=4 p=4+2 b+8 c \rightarrow 2 \mid b
$$

Case iii: $\langle g\rangle=\operatorname{Rep}\left(\mathbb{Z}_{2}\right)$

dim	1	2	4	\sqrt{p}
\# simples	a	b	c	h

$a^{\prime}=4+2 b$
$b^{\prime}=2 c$
$h^{\prime}=4$
$\left|\left(\mathcal{C}_{\mathbb{Z}_{2}}\right)_{\text {int }}\right|=4 p=4+2 b+8 c \rightarrow 2 \mid b$
$\left|\left(\mathcal{C}_{\mathbb{Z}_{2}}\right)_{p t}\right|\left|\left|\left(\mathcal{C}_{\mathbb{Z}_{2}}\right)_{\text {int }}\right| \rightarrow 4\left(1+\frac{b}{2}\right)\right| 4 p \rightarrow(b, c) \in\left\{\left(0, \frac{p-1}{2}\right),(2 p-2,0)\right\}$

Case iii: $\langle g\rangle=\operatorname{Rep}\left(\mathbb{Z}_{2}\right)$

$(b, c) \in\left\{\left(0, \frac{p-1}{2}\right),(\mathbf{2 p}-\mathbf{2}, \mathbf{0})\right\}$
$a^{\prime}=4+2 b=4 p$
$b^{\prime}=2 c=0$
$h^{\prime}=4$
$\mathcal{C}_{a d}$ has only two invertibles, so there can be no simple objects of dimension 4 without simple objects of dimension 2.

Case iii: $\langle g\rangle=\operatorname{Rep}\left(\mathbb{Z}_{2}\right)$

$(b, c) \in\left\{\left(0, \frac{p-1}{2}\right),(\mathbf{2 p}-\mathbf{2}, \mathbf{0})\right\}$
$a^{\prime}=4+2 b=4 p$
$b^{\prime}=2 c=0$
$h^{\prime}=4$
$\mathcal{C}_{\text {ad }}$ has only two invertibles, so there can be no simple objects of dimension 4 without simple objects of dimension 2.
$\mathcal{C}_{\mathbb{Z}_{2}}$ is a generalized Tambara-Yamagami category:

Generalized Tambara-Yamagami Category

- non-pointed fusion category
- the tensor product of two non-invertible simple objects is a direct sum of invertible objects

Acknowledgements

Mentor: Dr. Julia Plavnik

TAs: Paul Gustafson, Ola Sobieska

Collaborators: Katie Lee

REU hosted by Texas A\&M University and funded by the National Science Foundation (REU grant DMS-1460766)

References

R P. Bruillard, C. Galindo, S.-M. Hong, Y. Kashina, D. Naidu, S. Natale, J. Y. Plavnik, and E. C. Rowell.

Classification of integral modular categories of Frobenius-Perron dimension $p q^{4}$ and $p^{2} q^{2}$.
2013.

R P. Bruillard, C. Galindo, S.-H. Ng, J. Plavnik, E. C. Rowell, and
Z. Wang.

On the classification of weakly integral modular categories.
2014.

圊 P. Bruillard, J. Y. Plavnik, and E. C. Rowell.
Modular categories of dimension $p^{3} m$ with m square-free.
2016.
P. Etingof, S. Gelaki, D. Nikshych, and V. Ostrik.

Tensor Categories.
American Mathematical Society, 2010.

